Rini Jasmine Gladstone , Mohammad Amin Nabian , N. Sukumar , Ankit Srivastava , Hadi Meidani
{"title":"FO-PINN: A First-Order formulation for Physics-Informed Neural Networks","authors":"Rini Jasmine Gladstone , Mohammad Amin Nabian , N. Sukumar , Ankit Srivastava , Hadi Meidani","doi":"10.1016/j.enganabound.2025.106161","DOIUrl":null,"url":null,"abstract":"<div><div>Physics-Informed Neural Networks (PINNs) are a class of deep learning neural networks that learn the response of a physical system without any simulation data, and only by incorporating the governing partial differential equations (PDEs) in their loss function. While PINNs are successfully used for solving forward and inverse problems, their accuracy decreases significantly for parameterized systems and higher-order PDE problems. PINNs also have a soft implementation of boundary conditions resulting in boundary conditions not being exactly imposed everywhere on the boundary. With these challenges at hand, we present first-order physics-informed neural networks (FO-PINNs). These are PINNs that are trained using a first-order formulation of the PDE loss function. We show that, compared to standard PINNs, FO-PINNs offer significantly higher accuracy in solving parameterized systems, and reduce time-per-iteration by removing the extra backpropagations needed to compute the second or higher-order derivatives. Additionally, FO-PINNs can enable exact imposition of boundary conditions using approximate distance functions, which pose challenges when applied on high-order PDEs. Through four examples, we demonstrate the advantages of FO-PINNs over standard PINNs in terms of accuracy and training speedup.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"174 ","pages":"Article 106161"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725000499","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Physics-Informed Neural Networks (PINNs) are a class of deep learning neural networks that learn the response of a physical system without any simulation data, and only by incorporating the governing partial differential equations (PDEs) in their loss function. While PINNs are successfully used for solving forward and inverse problems, their accuracy decreases significantly for parameterized systems and higher-order PDE problems. PINNs also have a soft implementation of boundary conditions resulting in boundary conditions not being exactly imposed everywhere on the boundary. With these challenges at hand, we present first-order physics-informed neural networks (FO-PINNs). These are PINNs that are trained using a first-order formulation of the PDE loss function. We show that, compared to standard PINNs, FO-PINNs offer significantly higher accuracy in solving parameterized systems, and reduce time-per-iteration by removing the extra backpropagations needed to compute the second or higher-order derivatives. Additionally, FO-PINNs can enable exact imposition of boundary conditions using approximate distance functions, which pose challenges when applied on high-order PDEs. Through four examples, we demonstrate the advantages of FO-PINNs over standard PINNs in terms of accuracy and training speedup.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.