The protective role of GPX4 in naïve ESCs is highlighted by induced ferroptosis resistance through GPX4 expression

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Seokwoo Park , Mihn Jeong Park , Eun-Ji Kwon , Ji-Young Oh , Yeon-Joon Chu , Han Sun Kim , Sunghyouk Park , Tae Ha Kim , Sung Won Kwon , Yon Su Kim , Hyuk-Jin Cha
{"title":"The protective role of GPX4 in naïve ESCs is highlighted by induced ferroptosis resistance through GPX4 expression","authors":"Seokwoo Park ,&nbsp;Mihn Jeong Park ,&nbsp;Eun-Ji Kwon ,&nbsp;Ji-Young Oh ,&nbsp;Yeon-Joon Chu ,&nbsp;Han Sun Kim ,&nbsp;Sunghyouk Park ,&nbsp;Tae Ha Kim ,&nbsp;Sung Won Kwon ,&nbsp;Yon Su Kim ,&nbsp;Hyuk-Jin Cha","doi":"10.1016/j.redox.2025.103539","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroptosis, a form of oxidative cell death mediated by lipid peroxidation, is strictly regulated by glutathione peroxidase 4 (GPX4). Knockout of <em>Gpx4</em> results in embryonic lethality, highlighting its essential role in development. <em>In vitro</em>, mouse embryonic stem cells (mESCs), which represent the naïve pluripotent state, require β-mercaptoethanol (bME) to prevent cell death, unlike human embryonic stem cells, which represent the primed state. We hypothesized that naïve pluripotency is linked to a heightened susceptibility to ferroptosis due to unique metabolic demands and redox imbalances. In this study, we found that bME deprivation induces ferroptosis in naïve ESCs, as evidenced by lipid peroxidation; ferroptosis, however, is less evident in primed ESCs. Mechanistic analyses revealed that active oxidative phosphorylation (OXPHOS) in naïve ESCs increased mitochondrial reactive oxygen species. Consistent with the upregulation of <em>Gpx4</em> transcripts and OXPHOS-associated gene sets seen in the inner cell mass of blastocysts, stable GPX4 expression conferred resistance to ferroptosis induced by bME withdrawal. These results suggest that the unique redox and metabolic landscape of naïve ESCs highlits a potential requirement for GPX4 in maintaining naïve pluripotency, providing insights into early developmental processes and vulnerabilities.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103539"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000527","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis, a form of oxidative cell death mediated by lipid peroxidation, is strictly regulated by glutathione peroxidase 4 (GPX4). Knockout of Gpx4 results in embryonic lethality, highlighting its essential role in development. In vitro, mouse embryonic stem cells (mESCs), which represent the naïve pluripotent state, require β-mercaptoethanol (bME) to prevent cell death, unlike human embryonic stem cells, which represent the primed state. We hypothesized that naïve pluripotency is linked to a heightened susceptibility to ferroptosis due to unique metabolic demands and redox imbalances. In this study, we found that bME deprivation induces ferroptosis in naïve ESCs, as evidenced by lipid peroxidation; ferroptosis, however, is less evident in primed ESCs. Mechanistic analyses revealed that active oxidative phosphorylation (OXPHOS) in naïve ESCs increased mitochondrial reactive oxygen species. Consistent with the upregulation of Gpx4 transcripts and OXPHOS-associated gene sets seen in the inner cell mass of blastocysts, stable GPX4 expression conferred resistance to ferroptosis induced by bME withdrawal. These results suggest that the unique redox and metabolic landscape of naïve ESCs highlits a potential requirement for GPX4 in maintaining naïve pluripotency, providing insights into early developmental processes and vulnerabilities.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信