HybridCISN: Integrating 2D/3D convolutions and involutions with hyperspectral imaging and blood biomarkers for neonatal disease detection

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Mücahit CİHAN, Murat CEYLAN
{"title":"HybridCISN: Integrating 2D/3D convolutions and involutions with hyperspectral imaging and blood biomarkers for neonatal disease detection","authors":"Mücahit CİHAN,&nbsp;Murat CEYLAN","doi":"10.1016/j.compeleceng.2025.110193","DOIUrl":null,"url":null,"abstract":"<div><div>Early detection and accurate diagnosis of neonatal diseases are crucial for improving health outcomes and reducing infant mortality. This study introduces a novel Hybrid Convolutional and Involutional Spectral Network (HybridCISN) that integrates hyperspectral imaging (HSI) data with blood biomarker analysis to enhance neonatal health diagnostics. By combining 2D convolution, 3D convolution, and involution layers, the HybridCISN model extracts spatial, spectral, and channel-specific features, addressing limitations in traditional diagnostic methods. The model was evaluated through two distinct approaches: (1) using only HSI spectral data and (2) integrating HSI spectral data with blood biomarkers such as haemoglobin and bilirubin levels. These approaches were tested for both binary classification (healthy vs. unhealthy neonates) and multiclass classification (specific neonatal diseases such as intracranial hemorrhage, necrotizing enterocolitis, pneumothorax, and respiratory distress syndrome). Experimental results demonstrate the HybridCISN model's superior performance, achieving an overall accuracy of 93.64% for binary classification and 90.25% for multiclass classification. Compared to state-of-the-art methods such as the involution-based HarmonyNet and the 2D/3D convolution-based HybridSN, the HybridCISN model achieved accuracy improvements of 0.8% and 1.5%, respectively, in multiclass classification. The second approach, integrating blood biomarkers, improved diagnostic sensitivity and specificity, emphasizing the value of multimodal data fusion. Involution layers reduced channel redundancy and optimized feature extraction, as confirmed by ablation studies. The HybridCISN model offers a scalable and non-invasive diagnostic framework, addressing clinical applicability and biomarker accessibility, while combining precision, efficiency, and robustness to advance neonatal disease detection and set a benchmark for future research in medical imaging.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"123 ","pages":"Article 110193"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625001363","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Early detection and accurate diagnosis of neonatal diseases are crucial for improving health outcomes and reducing infant mortality. This study introduces a novel Hybrid Convolutional and Involutional Spectral Network (HybridCISN) that integrates hyperspectral imaging (HSI) data with blood biomarker analysis to enhance neonatal health diagnostics. By combining 2D convolution, 3D convolution, and involution layers, the HybridCISN model extracts spatial, spectral, and channel-specific features, addressing limitations in traditional diagnostic methods. The model was evaluated through two distinct approaches: (1) using only HSI spectral data and (2) integrating HSI spectral data with blood biomarkers such as haemoglobin and bilirubin levels. These approaches were tested for both binary classification (healthy vs. unhealthy neonates) and multiclass classification (specific neonatal diseases such as intracranial hemorrhage, necrotizing enterocolitis, pneumothorax, and respiratory distress syndrome). Experimental results demonstrate the HybridCISN model's superior performance, achieving an overall accuracy of 93.64% for binary classification and 90.25% for multiclass classification. Compared to state-of-the-art methods such as the involution-based HarmonyNet and the 2D/3D convolution-based HybridSN, the HybridCISN model achieved accuracy improvements of 0.8% and 1.5%, respectively, in multiclass classification. The second approach, integrating blood biomarkers, improved diagnostic sensitivity and specificity, emphasizing the value of multimodal data fusion. Involution layers reduced channel redundancy and optimized feature extraction, as confirmed by ablation studies. The HybridCISN model offers a scalable and non-invasive diagnostic framework, addressing clinical applicability and biomarker accessibility, while combining precision, efficiency, and robustness to advance neonatal disease detection and set a benchmark for future research in medical imaging.

Abstract Image

HybridCISN:将二维/三维卷积和渐开线与高光谱成像和血液生物标志物相结合,用于新生儿疾病检测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信