Urban intersection traffic flow prediction: A physics-guided stepwise framework utilizing spatio-temporal graph neural network algorithms

Yuyan Annie Pan , Fuliang Li , Anran Li , Zhiqiang Niu , Zhen Liu
{"title":"Urban intersection traffic flow prediction: A physics-guided stepwise framework utilizing spatio-temporal graph neural network algorithms","authors":"Yuyan Annie Pan ,&nbsp;Fuliang Li ,&nbsp;Anran Li ,&nbsp;Zhiqiang Niu ,&nbsp;Zhen Liu","doi":"10.1016/j.multra.2025.100207","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate traffic flow forecasting at urban intersections is critical for optimizing transportation infrastructure and reducing congestion. This manuscript introduces a novel framework, the Physics-Guided Spatio-Temporal Graph Neural Network (PG-STGNN), specifically designed for traffic flow prediction. By integrating the principles of traffic flow physics with advanced spatio-temporal graph neural network algorithms, the framework captures complex spatio-temporal dependencies in traffic networks. PG-STGNN adopts a stepwise approach, addressing key performance metrics like queue formation and signal timing complexities at intersections. To validate its effectiveness, the model was applied to real-world traffic data from the Yizhuang District of Beijing. Compared to traditional models such as ARIMA, KNN, and Random Forest, PG-STGNN significantly improves prediction accuracy, achieving MAPE reductions of 19.9 %, 18.6 %, 6.1 %, 20.7 %, 5.0 %, 1.8 %, and 1.1 % against KNN, ARIMA, RF, BP, T-GCN, STGCN, and ST-ED-RMGC, respectively. With the lowest MAPE (9.452 %), MAE (2.485), and RMSE (4.364), PG-STGNN demonstrates superior prediction performance. These results underscore its potential to provide reliable short-term traffic forecasts, offering essential insights for the strategic planning and management of urban intelligent transportation systems.</div></div>","PeriodicalId":100933,"journal":{"name":"Multimodal Transportation","volume":"4 2","pages":"Article 100207"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772586325000218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate traffic flow forecasting at urban intersections is critical for optimizing transportation infrastructure and reducing congestion. This manuscript introduces a novel framework, the Physics-Guided Spatio-Temporal Graph Neural Network (PG-STGNN), specifically designed for traffic flow prediction. By integrating the principles of traffic flow physics with advanced spatio-temporal graph neural network algorithms, the framework captures complex spatio-temporal dependencies in traffic networks. PG-STGNN adopts a stepwise approach, addressing key performance metrics like queue formation and signal timing complexities at intersections. To validate its effectiveness, the model was applied to real-world traffic data from the Yizhuang District of Beijing. Compared to traditional models such as ARIMA, KNN, and Random Forest, PG-STGNN significantly improves prediction accuracy, achieving MAPE reductions of 19.9 %, 18.6 %, 6.1 %, 20.7 %, 5.0 %, 1.8 %, and 1.1 % against KNN, ARIMA, RF, BP, T-GCN, STGCN, and ST-ED-RMGC, respectively. With the lowest MAPE (9.452 %), MAE (2.485), and RMSE (4.364), PG-STGNN demonstrates superior prediction performance. These results underscore its potential to provide reliable short-term traffic forecasts, offering essential insights for the strategic planning and management of urban intelligent transportation systems.
城市交叉口交通流量预测:利用时空图神经网络算法的物理引导逐步框架
准确预测城市交叉口的交通流量对于优化交通基础设施和减少拥堵至关重要。本手稿介绍了一种新颖的框架,即物理引导时空图神经网络(PG-STGNN),专门用于交通流预测。通过将交通流物理学原理与先进的时空图神经网络算法相结合,该框架可捕捉交通网络中复杂的时空依赖关系。PG-STGNN 采用循序渐进的方法,解决了交叉口队列形成和信号配时复杂性等关键性能指标。为验证其有效性,该模型被应用于北京亦庄地区的实际交通数据。与 ARIMA、KNN 和随机森林等传统模型相比,PG-STGNN 显著提高了预测精度,与 KNN、ARIMA、RF、BP、T-GCN、STGCN 和 ST-ED-RMGC 相比,MAPE 分别降低了 19.9%、18.6%、6.1%、20.7%、5.0%、1.8% 和 1.1%。PG-STGNN 的 MAPE (9.452 %)、MAE (2.485) 和 RMSE (4.364) 最低,显示出卓越的预测性能。这些结果凸显了 PG-STGNN 在提供可靠的短期交通预测方面的潜力,为城市智能交通系统的战略规划和管理提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信