A residual learning-based grey system model and its applications in Electricity Transformer’s Seasonal oil temperature forecasting

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yiwu Hao, Xin Ma, Lili Song, Yushu Xiang
{"title":"A residual learning-based grey system model and its applications in Electricity Transformer’s Seasonal oil temperature forecasting","authors":"Yiwu Hao,&nbsp;Xin Ma,&nbsp;Lili Song,&nbsp;Yushu Xiang","doi":"10.1016/j.engappai.2025.110260","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately predicting cross-regional electricity demand is crucial for efficient distribution management, but it remains challenging due to its complexity. Transformer oil temperature is a key indicator of operational status, and analyzing its seasonal variation is vital for addressing distribution issues. Grey models based on neural networks are effective for predicting nonlinear and small-scale datasets but are prone to overfitting. While residual networks help mitigate overfitting, their application to small-scale time series forecasting is still limited. To improve prediction accuracy for nonlinear and small-scale data, this study introduces residual learning into grey models, proposing a hybrid model. This model combines the feature-capturing ability of residual learning networks with the robustness of grey models, helping to reduce overfitting. The model is trained using the Adam algorithm, with parameters optimized by the Gridsearch algorithm. Performance is demonstrated using four seasonal datasets of transformer oil temperature. A comparison with 13 grey system models and 9 machine learning models shows that the proposed method outperforms the others. By calculating the percentage improvements of various metrics, the model demonstrates consistent performance gains. Sensitivity analysis reveals that the model’s performance is sensitive to the number of neurons and network depth, with higher values significantly improving accuracy and robustness. The results confirm the model’s effectiveness. This study fills the gap between neural grey models and residual networks, successfully applying the model to forecast the seasonal temperature trends of power transformers and providing a theoretical basis for addressing power distribution challenges.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"147 ","pages":"Article 110260"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095219762500260X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately predicting cross-regional electricity demand is crucial for efficient distribution management, but it remains challenging due to its complexity. Transformer oil temperature is a key indicator of operational status, and analyzing its seasonal variation is vital for addressing distribution issues. Grey models based on neural networks are effective for predicting nonlinear and small-scale datasets but are prone to overfitting. While residual networks help mitigate overfitting, their application to small-scale time series forecasting is still limited. To improve prediction accuracy for nonlinear and small-scale data, this study introduces residual learning into grey models, proposing a hybrid model. This model combines the feature-capturing ability of residual learning networks with the robustness of grey models, helping to reduce overfitting. The model is trained using the Adam algorithm, with parameters optimized by the Gridsearch algorithm. Performance is demonstrated using four seasonal datasets of transformer oil temperature. A comparison with 13 grey system models and 9 machine learning models shows that the proposed method outperforms the others. By calculating the percentage improvements of various metrics, the model demonstrates consistent performance gains. Sensitivity analysis reveals that the model’s performance is sensitive to the number of neurons and network depth, with higher values significantly improving accuracy and robustness. The results confirm the model’s effectiveness. This study fills the gap between neural grey models and residual networks, successfully applying the model to forecast the seasonal temperature trends of power transformers and providing a theoretical basis for addressing power distribution challenges.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信