Fisher’s information matrix approach for Fourier features physics-informed neural networks for two-dimensional local time-fractional anomalous diffusion equations with nonlinear thermal diffusivity
IF 4 3区 工程技术Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Fisher’s information matrix approach for Fourier features physics-informed neural networks for two-dimensional local time-fractional anomalous diffusion equations with nonlinear thermal diffusivity","authors":"Navnit Jha, Ekansh Mallik","doi":"10.1108/hff-11-2024-0889","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to explore the influence of Fourier-feature enhanced physics-informed neural networks (PINNs) on effectively solving two-dimensional local time-fractional anomalous diffusion equations with nonlinear thermal diffusivity. By tackling the shortcomings of conventional numerical methods in managing fractional derivatives and nonlinearities, this research addresses a significant gap in the literature regarding efficient solution strategies for complex diffusion processes.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study uses a quantitative methodology featuring a feed-forward neural network architecture combined with a Fourier feature layer. Automatic differentiation is implemented to ensure precise gradient calculations for fractional derivatives. The effectiveness of the proposed approach is showcased through numerical simulations across various sub-diffusion and super-diffusion scenarios, with fractal space parameters adjusted to examine behavior. In addition, the training process is assessed using the Fisher information matrix to analyze the loss landscape.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results demonstrate that the Fourier-feature enhanced PINNs effectively capture the dynamics of the anomalous diffusion equation, achieving greater solution accuracy than traditional methods. The analysis using the Fisher information matrix underscores the importance of hyperparameter tuning in optimizing network performance. These findings support the hypothesis that Fourier features improve the model’s capacity to represent complex solution behaviors, providing the relationship between model architecture and diffusion dynamics.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This research presents a novel approach to solving fractional anomalous diffusion equations through Fourier-feature enhanced PINNs. The results contribute to the advancement of computational methods in areas such as thermal engineering, materials science and biological diffusion modeling, while also providing a foundation for future investigations into training dynamics within neural networks.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"65 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-11-2024-0889","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to explore the influence of Fourier-feature enhanced physics-informed neural networks (PINNs) on effectively solving two-dimensional local time-fractional anomalous diffusion equations with nonlinear thermal diffusivity. By tackling the shortcomings of conventional numerical methods in managing fractional derivatives and nonlinearities, this research addresses a significant gap in the literature regarding efficient solution strategies for complex diffusion processes.
Design/methodology/approach
This study uses a quantitative methodology featuring a feed-forward neural network architecture combined with a Fourier feature layer. Automatic differentiation is implemented to ensure precise gradient calculations for fractional derivatives. The effectiveness of the proposed approach is showcased through numerical simulations across various sub-diffusion and super-diffusion scenarios, with fractal space parameters adjusted to examine behavior. In addition, the training process is assessed using the Fisher information matrix to analyze the loss landscape.
Findings
The results demonstrate that the Fourier-feature enhanced PINNs effectively capture the dynamics of the anomalous diffusion equation, achieving greater solution accuracy than traditional methods. The analysis using the Fisher information matrix underscores the importance of hyperparameter tuning in optimizing network performance. These findings support the hypothesis that Fourier features improve the model’s capacity to represent complex solution behaviors, providing the relationship between model architecture and diffusion dynamics.
Originality/value
This research presents a novel approach to solving fractional anomalous diffusion equations through Fourier-feature enhanced PINNs. The results contribute to the advancement of computational methods in areas such as thermal engineering, materials science and biological diffusion modeling, while also providing a foundation for future investigations into training dynamics within neural networks.
期刊介绍:
The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf