Collaborative orchestration of BH3-only proteins governs Bak/Bax-dependent hepatocyte apoptosis under antiapoptotic protein-deficiency in mice

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shinnosuke Kudo, Hayato Hikita, Yoshinobu Saito, Kazuhiro Murai, Takahiro Kodama, Tomohide Tatsumi, Tetsuo Takehara
{"title":"Collaborative orchestration of BH3-only proteins governs Bak/Bax-dependent hepatocyte apoptosis under antiapoptotic protein-deficiency in mice","authors":"Shinnosuke Kudo, Hayato Hikita, Yoshinobu Saito, Kazuhiro Murai, Takahiro Kodama, Tomohide Tatsumi, Tetsuo Takehara","doi":"10.1038/s41418-025-01458-y","DOIUrl":null,"url":null,"abstract":"<p>The fine-tuned balance between anti-apoptotic Bcl-2 family proteins, such as Bcl-xL and Mcl-1, and pro-apoptotic Bcl-2 family proteins, like Bak and Bax, is crucial for maintaining hepatocyte integrity. BH3-only proteins, including Bid, Bim, Puma, Noxa, Bad, Bmf, Bik and Hrk, serve as apoptosis initiators. They are activated by various stimuli, which leads to Bak/Bax activation. We previously reported that Bid and Bim contributed to hepatocyte apoptosis through Bak/Bax activation in the absence of anti-apoptotic proteins Bcl-xL and/or Mcl-1. However, the comprehensive involvement of all eight BH3-only proteins in Bak/Bax-dependent hepatocyte apoptosis remains unclear. Puma disruption suppressed hepatocyte apoptosis in hepatocyte-specific Bcl-xL or Mcl-1 knockout (Bcl-xL<sup>ΔHep/ΔHep</sup> or Mcl-1<sup>ΔHep/ΔHep</sup>) mice. Disruption of Bid and Bim partially prevented lethality in Mcl-1<sup>ΔHep/+</sup> Bcl-xL<sup>ΔHep/ΔHep</sup> mice, although severe hepatocyte apoptosis persisted, which was suppressed by additional Puma disruption. However, hepatocyte apoptosis was still induced compared to that in Mcl-1<sup>ΔHep/+</sup> Bcl-xL<sup>ΔHep/ΔHep</sup> Bax<sup>ΔHep/ΔHep</sup> Bak<sup>−/−</sup> mice. Triple disruption of Bid, Bim and Puma did not prevent induction of hepatocyte apoptosis in tamoxifen-induced Mcl-1<sup>iΔHep/iΔHep</sup> Bcl-xL<sup>iΔHep/iΔHep</sup> mice. Primary hepatocytes, isolated from Mcl-1<sup>fl/fl</sup> Bcl-xL<sup>fl/fl</sup> Bid<sup>−/−</sup> Bim<sup>−/−</sup> Puma<sup>−/−</sup> mice and immortalized, underwent apoptosis with doxycycline-dependent Cre recombination. Among the remaining five BH3-only proteins, Bik and Hrk were not expressed in these cells, and Noxa knockdown, but not Bad or Bmf knockdown, reduced apoptosis. Noxa disruption alleviated hepatocyte apoptosis in Mcl-1<sup>ΔHep/ΔHep</sup> mice and tamoxifen-induced Mcl-1<sup>iΔHep/iΔHep</sup> Bcl-xL<sup>iΔHep/iΔHep</sup> Bid<sup>−/−</sup> Bim<sup>−/−</sup> Puma<sup>−/−</sup> mice, prolonging survival. Apoptosis persisted in immortalized primary hepatocytes isolated from Mcl-1<sup>fl/fl</sup> Bcl-xL<sup>fl/fl</sup> Bid<sup>−/−</sup> Bim<sup>−/−</sup> Puma<sup>−/−</sup> Noxa<sup>−/−</sup> mice where doxycycline-dependent Cre recombination was induced, but was completely suppressed by Bak/Bax knockdown, while Bad or Bmf knockdown had no effect. In conclusion, among the eight BH3-only proteins, Puma and Noxa, alongside Bid and Bim, contributed to Bak/Bax-dependent hepatocyte apoptosis, but not indispensably, in the absence of Mcl-1 and Bcl-xL.</p><figure></figure>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"65 5 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01458-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The fine-tuned balance between anti-apoptotic Bcl-2 family proteins, such as Bcl-xL and Mcl-1, and pro-apoptotic Bcl-2 family proteins, like Bak and Bax, is crucial for maintaining hepatocyte integrity. BH3-only proteins, including Bid, Bim, Puma, Noxa, Bad, Bmf, Bik and Hrk, serve as apoptosis initiators. They are activated by various stimuli, which leads to Bak/Bax activation. We previously reported that Bid and Bim contributed to hepatocyte apoptosis through Bak/Bax activation in the absence of anti-apoptotic proteins Bcl-xL and/or Mcl-1. However, the comprehensive involvement of all eight BH3-only proteins in Bak/Bax-dependent hepatocyte apoptosis remains unclear. Puma disruption suppressed hepatocyte apoptosis in hepatocyte-specific Bcl-xL or Mcl-1 knockout (Bcl-xLΔHep/ΔHep or Mcl-1ΔHep/ΔHep) mice. Disruption of Bid and Bim partially prevented lethality in Mcl-1ΔHep/+ Bcl-xLΔHep/ΔHep mice, although severe hepatocyte apoptosis persisted, which was suppressed by additional Puma disruption. However, hepatocyte apoptosis was still induced compared to that in Mcl-1ΔHep/+ Bcl-xLΔHep/ΔHep BaxΔHep/ΔHep Bak−/− mice. Triple disruption of Bid, Bim and Puma did not prevent induction of hepatocyte apoptosis in tamoxifen-induced Mcl-1iΔHep/iΔHep Bcl-xLiΔHep/iΔHep mice. Primary hepatocytes, isolated from Mcl-1fl/fl Bcl-xLfl/fl Bid−/− Bim−/− Puma−/− mice and immortalized, underwent apoptosis with doxycycline-dependent Cre recombination. Among the remaining five BH3-only proteins, Bik and Hrk were not expressed in these cells, and Noxa knockdown, but not Bad or Bmf knockdown, reduced apoptosis. Noxa disruption alleviated hepatocyte apoptosis in Mcl-1ΔHep/ΔHep mice and tamoxifen-induced Mcl-1iΔHep/iΔHep Bcl-xLiΔHep/iΔHep Bid−/− Bim−/− Puma−/− mice, prolonging survival. Apoptosis persisted in immortalized primary hepatocytes isolated from Mcl-1fl/fl Bcl-xLfl/fl Bid−/− Bim−/− Puma−/− Noxa−/− mice where doxycycline-dependent Cre recombination was induced, but was completely suppressed by Bak/Bax knockdown, while Bad or Bmf knockdown had no effect. In conclusion, among the eight BH3-only proteins, Puma and Noxa, alongside Bid and Bim, contributed to Bak/Bax-dependent hepatocyte apoptosis, but not indispensably, in the absence of Mcl-1 and Bcl-xL.

Abstract Image

在小鼠体内抗凋亡蛋白缺乏的情况下,仅 BH3 蛋白的协作协调支配着 Bak/Bax 依赖性肝细胞凋亡
抗凋亡的Bcl-2家族蛋白(如Bcl-xL和Mcl-1)和促凋亡的Bcl-2家族蛋白(如Bak和Bax)之间的精细平衡对于维持肝细胞的完整性至关重要。bh3蛋白,包括Bid、Bim、Puma、Noxa、Bad、Bmf、Bik和Hrk,是细胞凋亡的启动因子。它们被各种刺激激活,从而导致Bak/Bax激活。我们之前报道过,在缺乏抗凋亡蛋白Bcl-xL和/或Mcl-1的情况下,Bid和Bim通过激活Bak/Bax促进肝细胞凋亡。然而,所有八种BH3-only蛋白在Bak/ bax依赖性肝细胞凋亡中的全面参与尚不清楚。在肝细胞特异性Bcl-xL或Mcl-1敲除(Bcl-xLΔHep/ΔHep或Mcl-1ΔHep/ΔHep)小鼠中,Puma破坏抑制肝细胞凋亡。Bid和Bim的破坏部分阻止了Mcl-1ΔHep/+ Bcl-xLΔHep/ΔHep小鼠的死亡,尽管严重的肝细胞凋亡持续存在,这被额外的Puma破坏所抑制。然而,与Mcl-1ΔHep/+ Bcl-xLΔHep/ΔHep BaxΔHep/ΔHep Bak−/−小鼠相比,仍可诱导肝细胞凋亡。在他莫昔芬诱导的Mcl-1iΔHep/iΔHep Bcl-xLiΔHep/iΔHep小鼠中,Bid、Bim和Puma的三重破坏并不能阻止肝细胞凋亡的诱导。从Mcl-1fl/fl Bcl-xLfl/fl Bid - / - Bim - / - Puma - / -小鼠中分离并永活的原代肝细胞通过多西环素依赖性Cre重组进行凋亡。在其余5种BH3-only蛋白中,Bik和Hrk在这些细胞中不表达,Noxa敲低,而Bad或Bmf敲低,减少了细胞凋亡。Noxa破坏可减轻Mcl-1ΔHep/ΔHep小鼠和他莫昔芬诱导的Mcl-1iΔHep/iΔHep Bcl-xLiΔHep/iΔHep Bid - / - Bim - / - Puma - / -小鼠的肝细胞凋亡,延长生存期。在强西环素依赖性Cre重组诱导Mcl-1fl/fl Bcl-xLfl/fl Bid - / - Bim - / - Puma - / - Noxa - / -小鼠分离的永活原代肝细胞中,细胞凋亡持续存在,但被Bak/Bax敲除完全抑制,而Bad或Bmf敲除无影响。综上所述,在8种BH3-only蛋白中,Puma和Noxa与Bid和Bim一起促进了Bak/ bax依赖性肝细胞的凋亡,但在Mcl-1和Bcl-xL缺失的情况下,这不是必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信