Probing into the Selective Nucleation Mechanism of Poly(methyl methacrylate) Modified Cellulose Nanocrystals in Enantiomeric Poly(lactic acid) Blends

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Xiangdong Hua, Hao Wu, Yunxiao Liu, Jian Hu, Yongxin Duan, Jianming Zhang
{"title":"Probing into the Selective Nucleation Mechanism of Poly(methyl methacrylate) Modified Cellulose Nanocrystals in Enantiomeric Poly(lactic acid) Blends","authors":"Xiangdong Hua, Hao Wu, Yunxiao Liu, Jian Hu, Yongxin Duan, Jianming Zhang","doi":"10.1021/acs.macromol.4c02545","DOIUrl":null,"url":null,"abstract":"Despite the superior performance of stereocomplex crystallites (SCs) formed between poly(<span>l</span>-lactic acid) (PLLA) and poly(<span>d</span>-lactic acid) (PDLA), achieving exclusive SC crystallization based on environmentally friendly strategies remains a challenge. This study systematically investigates the impact of poly(methyl methacrylate) (PMMA)-modified cellulose nanocrystals (CNCs-PMMA) on the crystallization behavior and phase evolution of enantiomeric PLA blends. Experiments demonstrate that CNCs-PMMA acts as an effective nucleating agent for SCs, increasing the nucleation density, crystallinity, and relative fraction of SCs. Exclusive formation of SCs is achieved with the addition of 3 wt % CNCs-PMMA. By comparing the crystallization behavior of PLLA/PDLA/PMMA triple blends, the selective nucleation mechanism of CNCs-PMMA is elucidated. First, the dilution effect of PMMA enriched at the CNCs/PLA matrix interface inhibits homocrystallization, thereby maximizing the thermodynamic advantages of SC crystallization and the inherent nucleating effect of CNCs. Second, the CNC filler network improves the compatibility between PLA enantiomers while also suppressing the phase separation between high-molecular-weight components. Overall, this work reveals the selective nucleation mechanism of polymer-grafted CNCs on SCs and expands the application scope of biomass nanoparticles as multifunctional nanofillers.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"10 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02545","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the superior performance of stereocomplex crystallites (SCs) formed between poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA), achieving exclusive SC crystallization based on environmentally friendly strategies remains a challenge. This study systematically investigates the impact of poly(methyl methacrylate) (PMMA)-modified cellulose nanocrystals (CNCs-PMMA) on the crystallization behavior and phase evolution of enantiomeric PLA blends. Experiments demonstrate that CNCs-PMMA acts as an effective nucleating agent for SCs, increasing the nucleation density, crystallinity, and relative fraction of SCs. Exclusive formation of SCs is achieved with the addition of 3 wt % CNCs-PMMA. By comparing the crystallization behavior of PLLA/PDLA/PMMA triple blends, the selective nucleation mechanism of CNCs-PMMA is elucidated. First, the dilution effect of PMMA enriched at the CNCs/PLA matrix interface inhibits homocrystallization, thereby maximizing the thermodynamic advantages of SC crystallization and the inherent nucleating effect of CNCs. Second, the CNC filler network improves the compatibility between PLA enantiomers while also suppressing the phase separation between high-molecular-weight components. Overall, this work reveals the selective nucleation mechanism of polymer-grafted CNCs on SCs and expands the application scope of biomass nanoparticles as multifunctional nanofillers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信