Hydrophobic Ionic Liquid Engineering for Reversing CO Intermediate Configuration toward Ampere-Level CO2 Electroreduction to C2+ Products

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Runhua Chen, Qiong Wu, Juncheng Zhu, Shumin Wang, Zexun Hu, Jun Hu, Junfa Zhu, Hongjun Zhang, Bangjiao Ye, Yongfu Sun, Yi Xie
{"title":"Hydrophobic Ionic Liquid Engineering for Reversing CO Intermediate Configuration toward Ampere-Level CO2 Electroreduction to C2+ Products","authors":"Runhua Chen, Qiong Wu, Juncheng Zhu, Shumin Wang, Zexun Hu, Jun Hu, Junfa Zhu, Hongjun Zhang, Bangjiao Ye, Yongfu Sun, Yi Xie","doi":"10.1021/jacs.4c18508","DOIUrl":null,"url":null,"abstract":"Hydrophobic ionic liquid (HIL) engineering on the catalyst surface represents a simple yet potent direction for optimizing the CO<sub>2</sub> electroreduction performance. However, the pivotal role of HIL engineering at an industrial current density is still ambiguous due to limited and conflicting research findings. Herein, HIL-engineered oxide-derived Cu porous nanoparticles with electron-delocalized groups and a specific ultramicropore structure are first constructed to facilitate CO<sub>2</sub>-to-C<sub>2+</sub> electroreduction at ampere-level current densities. The uniformly decorated HIL is innovatively demonstrated by positron annihilation lifetime spectroscopy, which offers unparalleled advantages in ultramicropore characterization. Bader charge-dependent performance analyses and theoretical calculations disclose that the N atoms in the HIL lower the adsorption energy of CO on the atop site from −0.38 to −1.42 eV through electron donation, which inverts the most stable adsorption site and favors the energy-efficient dimerization of atop-bound CO. Operando Raman spectra and in situ attenuated total reflection-surface enhanced infrared absorption spectroscopy indicate that the adhered HIL increases *CO coverage and alters the *CO adsorption configuration to an atop-bound state with an abundant high-frequency band. Furthermore, staircase potential electrochemical impedance spectroscopy unravels the specific arrangement structure of HIL enlarges the electrochemical surface charge by about 1.5 times, thereby accelerating CO<sub>2</sub> electroreduction. As a result, the HIL-engineered oxide-derived Cu porous nanoparticles achieve a prominent C<sub>2+</sub> productivity with a Faradaic efficiency of 85.1% and a formation rate up to 2512 μmol h<sup>–1</sup> cm<sup>–2</sup>, outperforming most reported Cu-based electrocatalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"128 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c18508","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrophobic ionic liquid (HIL) engineering on the catalyst surface represents a simple yet potent direction for optimizing the CO2 electroreduction performance. However, the pivotal role of HIL engineering at an industrial current density is still ambiguous due to limited and conflicting research findings. Herein, HIL-engineered oxide-derived Cu porous nanoparticles with electron-delocalized groups and a specific ultramicropore structure are first constructed to facilitate CO2-to-C2+ electroreduction at ampere-level current densities. The uniformly decorated HIL is innovatively demonstrated by positron annihilation lifetime spectroscopy, which offers unparalleled advantages in ultramicropore characterization. Bader charge-dependent performance analyses and theoretical calculations disclose that the N atoms in the HIL lower the adsorption energy of CO on the atop site from −0.38 to −1.42 eV through electron donation, which inverts the most stable adsorption site and favors the energy-efficient dimerization of atop-bound CO. Operando Raman spectra and in situ attenuated total reflection-surface enhanced infrared absorption spectroscopy indicate that the adhered HIL increases *CO coverage and alters the *CO adsorption configuration to an atop-bound state with an abundant high-frequency band. Furthermore, staircase potential electrochemical impedance spectroscopy unravels the specific arrangement structure of HIL enlarges the electrochemical surface charge by about 1.5 times, thereby accelerating CO2 electroreduction. As a result, the HIL-engineered oxide-derived Cu porous nanoparticles achieve a prominent C2+ productivity with a Faradaic efficiency of 85.1% and a formation rate up to 2512 μmol h–1 cm–2, outperforming most reported Cu-based electrocatalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信