Andreas Michel, Martin Weinmann, Jannick Kuester, Faisal AlNasser, Tomas Gomez, Mark Falvey, Rainer Schmitz, Wolfgang Middelmann, Stefan Hinz
{"title":"DustNet++: Deep Learning-Based Visual Regression for Dust Density Estimation","authors":"Andreas Michel, Martin Weinmann, Jannick Kuester, Faisal AlNasser, Tomas Gomez, Mark Falvey, Rainer Schmitz, Wolfgang Middelmann, Stefan Hinz","doi":"10.1007/s11263-025-02376-9","DOIUrl":null,"url":null,"abstract":"<p>Detecting airborne dust in standard RGB images presents significant challenges. Nevertheless, the monitoring of airborne dust holds substantial potential benefits for climate protection, environmentally sustainable construction, scientific research, and various other fields. To develop an efficient and robust algorithm for airborne dust monitoring, several hurdles have to be addressed. Airborne dust can be opaque or translucent, exhibit considerable variation in density, and possess indistinct boundaries. Moreover, distinguishing dust from other atmospheric phenomena, such as fog or clouds, can be particularly challenging. To meet the demand for a high-performing and reliable method for monitoring airborne dust, we introduce DustNet++, a neural network designed for dust density estimation. DustNet++ leverages feature maps from multiple resolution scales and semantic levels through window and grid attention mechanisms to maintain a sparse, globally effective receptive field with linear complexity. To validate our approach, we benchmark the performance of DustNet++ against existing methods from the domains of crowd counting and monocular depth estimation using the Meteodata airborne dust dataset and the URDE binary dust segmentation dataset. Our findings demonstrate that DustNet++ surpasses comparative methodologies in terms of regression and localization capabilities.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"56 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02376-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting airborne dust in standard RGB images presents significant challenges. Nevertheless, the monitoring of airborne dust holds substantial potential benefits for climate protection, environmentally sustainable construction, scientific research, and various other fields. To develop an efficient and robust algorithm for airborne dust monitoring, several hurdles have to be addressed. Airborne dust can be opaque or translucent, exhibit considerable variation in density, and possess indistinct boundaries. Moreover, distinguishing dust from other atmospheric phenomena, such as fog or clouds, can be particularly challenging. To meet the demand for a high-performing and reliable method for monitoring airborne dust, we introduce DustNet++, a neural network designed for dust density estimation. DustNet++ leverages feature maps from multiple resolution scales and semantic levels through window and grid attention mechanisms to maintain a sparse, globally effective receptive field with linear complexity. To validate our approach, we benchmark the performance of DustNet++ against existing methods from the domains of crowd counting and monocular depth estimation using the Meteodata airborne dust dataset and the URDE binary dust segmentation dataset. Our findings demonstrate that DustNet++ surpasses comparative methodologies in terms of regression and localization capabilities.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.