A type-5 metabotropic glutamate receptor-perineuronal net axis shapes the function of cortical GABAergic interneurons in chronic pain.

Giada Mascio, Ferdinando Nicoletti, Giuseppe Battaglia, Serena Notartomaso
{"title":"A type-5 metabotropic glutamate receptor-perineuronal net axis shapes the function of cortical GABAergic interneurons in chronic pain.","authors":"Giada Mascio, Ferdinando Nicoletti, Giuseppe Battaglia, Serena Notartomaso","doi":"10.1186/s44158-025-00228-z","DOIUrl":null,"url":null,"abstract":"<p><p>Parvalbumin-positive (PV<sup>+</sup>) interneurons (basket and chandelier cells) regulate the firing rate of pyramidal neurons in the cerebral cortex and play a key role in the generation of network oscillations in the cerebral cortex. A growing body of evidence suggest that cortical PV<sup>+</sup> interneurons become overactive in chronic pain and contribute to nociceptive sensitization by inhibiting a top-down analgesic pathway. Here, we provide further support to this hypothesis showing that intracortical infusion of the GABA<sub>A</sub> receptor antagonist, bicuculline, caused analgesia in a mouse model of chronic inflammatory pain, although it reduced pain thresholds in healthy mice. We propose that mGlu5 metabotropic glutamate receptors and perineuronal nets (PNNs) shape the activity of PV<sup>+</sup> interneurons in chronic pain, generating a form of maladaptive plasticity that enhances behavioural pain responses. mGlu5 receptors might be locally targeted by drugs activated by light delivered in cortical regions of the pain matrix, whereas the density of PNNs enwrapping PV<sup>+</sup> interneurons might be reduced by local activation of PNN-degrading enzyme, such as type-9 matrix metalloproteinase. These strategies, which may require invasive treatments, might be beneficial in the management of severe pain which is refractory to conventional pharmacological and non-pharmacological interventions.</p>","PeriodicalId":73597,"journal":{"name":"Journal of Anesthesia, Analgesia and Critical Care (Online)","volume":"5 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846390/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anesthesia, Analgesia and Critical Care (Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s44158-025-00228-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parvalbumin-positive (PV+) interneurons (basket and chandelier cells) regulate the firing rate of pyramidal neurons in the cerebral cortex and play a key role in the generation of network oscillations in the cerebral cortex. A growing body of evidence suggest that cortical PV+ interneurons become overactive in chronic pain and contribute to nociceptive sensitization by inhibiting a top-down analgesic pathway. Here, we provide further support to this hypothesis showing that intracortical infusion of the GABAA receptor antagonist, bicuculline, caused analgesia in a mouse model of chronic inflammatory pain, although it reduced pain thresholds in healthy mice. We propose that mGlu5 metabotropic glutamate receptors and perineuronal nets (PNNs) shape the activity of PV+ interneurons in chronic pain, generating a form of maladaptive plasticity that enhances behavioural pain responses. mGlu5 receptors might be locally targeted by drugs activated by light delivered in cortical regions of the pain matrix, whereas the density of PNNs enwrapping PV+ interneurons might be reduced by local activation of PNN-degrading enzyme, such as type-9 matrix metalloproteinase. These strategies, which may require invasive treatments, might be beneficial in the management of severe pain which is refractory to conventional pharmacological and non-pharmacological interventions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信