Enhanced exosome secretion regulated by microglial P2X7R in the medullary dorsal horn contributes to pulpitis-induced pain.

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jing Zhang, Zhuo Yu, Mingjun Wang, Xiaoning Kang, Xiaoke Wu, Fengjiao Yang, Lu Yang, Shukai Sun, Li-An Wu
{"title":"Enhanced exosome secretion regulated by microglial P2X7R in the medullary dorsal horn contributes to pulpitis-induced pain.","authors":"Jing Zhang, Zhuo Yu, Mingjun Wang, Xiaoning Kang, Xiaoke Wu, Fengjiao Yang, Lu Yang, Shukai Sun, Li-An Wu","doi":"10.1186/s13578-025-01363-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pulpitis is a prevalent oral disease characterized by severe pain. The activation of microglia in the medullary dorsal horn (MDH) is reportedly essential for the central sensitization mechanism associated with pulpitis. The P2X7 receptor (P2X7R) on microglia can trigger the secretion of exosomes enriched with IL-1β, which is involved in inflammation. Thus, we hypothesized that the enhanced exosome secretion regulated by microglial P2X7R in the MDH contributes to pulpitis-induced pain.</p><p><strong>Methods: </strong>An experimental pulpitis model was established in male SD rats to observe pain behaviors. Immunofluorescence staining, western blotting and quantitative real-time PCR were used to analyze the expression of IL-1β and Rab27a, a key protein secreted by exosomes during nociceptive processes. The effects of the exosome inhibitor GW4869 and the P2X7R antagonist Brilliant Blue G (BBG) on microglial P2X7R, exosome secretion and inflammation in the pulpitis model were analyzed. In vitro, microglial cells were cultured to collect exosomes, and stimulation with lipopolysaccharide (LPS), oxidized ATP (oxATP) and GW4869 altered the secretion of exosomes containing IL-1β.</p><p><strong>Results: </strong>In the experimental pulpitis model, the microglial exosome secretion and inflammatory factor release in the MDH were both correlated with the extent of pulpitis-induced pain, with the highest expression occurring on the 7th day. GW4869 and BBG inhibited Rab27a and IL-1β expression, reducing pulpitis-induced pain. In addition, exosomes were successfully extracted by ultracentrifugation in vitro, wherein LPS treatment promoted exosome secretion but GW4869 had the opposite effects on the secretion of exosomes and the IL-1β. Moreover, P2X7R inhibition by oxATP diminished exosome secretion, leading to a reduction in inflammatory responses.</p><p><strong>Conclusion: </strong>This study highlights the regulatory role of microglial P2X7R in increased exosome secretion, indicating the potential utility of P2X7R as a promising target for pulpitis therapy. Our research highlights a new pulpitis mechanism in which exosomes enriched with IL-1β contribute to pulpitis-induced pain, suggesting the crucial roles of exosomes as pain biomarkers and harmful signaling molecules during pulpitis.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"28"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847359/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Bioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13578-025-01363-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pulpitis is a prevalent oral disease characterized by severe pain. The activation of microglia in the medullary dorsal horn (MDH) is reportedly essential for the central sensitization mechanism associated with pulpitis. The P2X7 receptor (P2X7R) on microglia can trigger the secretion of exosomes enriched with IL-1β, which is involved in inflammation. Thus, we hypothesized that the enhanced exosome secretion regulated by microglial P2X7R in the MDH contributes to pulpitis-induced pain.

Methods: An experimental pulpitis model was established in male SD rats to observe pain behaviors. Immunofluorescence staining, western blotting and quantitative real-time PCR were used to analyze the expression of IL-1β and Rab27a, a key protein secreted by exosomes during nociceptive processes. The effects of the exosome inhibitor GW4869 and the P2X7R antagonist Brilliant Blue G (BBG) on microglial P2X7R, exosome secretion and inflammation in the pulpitis model were analyzed. In vitro, microglial cells were cultured to collect exosomes, and stimulation with lipopolysaccharide (LPS), oxidized ATP (oxATP) and GW4869 altered the secretion of exosomes containing IL-1β.

Results: In the experimental pulpitis model, the microglial exosome secretion and inflammatory factor release in the MDH were both correlated with the extent of pulpitis-induced pain, with the highest expression occurring on the 7th day. GW4869 and BBG inhibited Rab27a and IL-1β expression, reducing pulpitis-induced pain. In addition, exosomes were successfully extracted by ultracentrifugation in vitro, wherein LPS treatment promoted exosome secretion but GW4869 had the opposite effects on the secretion of exosomes and the IL-1β. Moreover, P2X7R inhibition by oxATP diminished exosome secretion, leading to a reduction in inflammatory responses.

Conclusion: This study highlights the regulatory role of microglial P2X7R in increased exosome secretion, indicating the potential utility of P2X7R as a promising target for pulpitis therapy. Our research highlights a new pulpitis mechanism in which exosomes enriched with IL-1β contribute to pulpitis-induced pain, suggesting the crucial roles of exosomes as pain biomarkers and harmful signaling molecules during pulpitis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell and Bioscience
Cell and Bioscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.70
自引率
0.00%
发文量
187
审稿时长
>12 weeks
期刊介绍: Cell and Bioscience, the official journal of the Society of Chinese Bioscientists in America, is an open access, peer-reviewed journal that encompasses all areas of life science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信