AsaruSim: a single-cell and spatial RNA-Seq Nanopore long-reads simulation workflow.

Ali Hamraoui, Laurent Jourdren, Morgane Thomas-Chollier
{"title":"AsaruSim: a single-cell and spatial RNA-Seq Nanopore long-reads simulation workflow.","authors":"Ali Hamraoui, Laurent Jourdren, Morgane Thomas-Chollier","doi":"10.1093/bioinformatics/btaf087","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The combination of long-read sequencing technologies like Oxford Nanopore with single-cell RNA sequencing (scRNAseq) assays enables the detailed exploration of transcriptomic complexity, including isoform detection and quantification, by capturing full-length cDNAs. However, challenges remain, including the lack of advanced simulation tools that can effectively mimic the unique complexities of scRNAseq long-read datasets. Such tools are essential for the evaluation and optimization of isoform detection methods dedicated to single-cell long-read studies.</p><p><strong>Results: </strong>We developed AsaruSim, a workflow that simulates synthetic single-cell long-read Nanopore datasets, closely mimicking real experimental data. AsaruSim employs a multi-step process that includes the creation of a synthetic count matrix, generation of perfect reads, optional PCR amplification, introduction of sequencing errors, and comprehensive quality control reporting. Applied to a dataset of human peripheral blood mononuclear cells, AsaruSim accurately reproduced experimental read characteristics.</p><p><strong>Availability and implementation: </strong>The source code and full documentation are available at https://github.com/GenomiqueENS/AsaruSim.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897429/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The combination of long-read sequencing technologies like Oxford Nanopore with single-cell RNA sequencing (scRNAseq) assays enables the detailed exploration of transcriptomic complexity, including isoform detection and quantification, by capturing full-length cDNAs. However, challenges remain, including the lack of advanced simulation tools that can effectively mimic the unique complexities of scRNAseq long-read datasets. Such tools are essential for the evaluation and optimization of isoform detection methods dedicated to single-cell long-read studies.

Results: We developed AsaruSim, a workflow that simulates synthetic single-cell long-read Nanopore datasets, closely mimicking real experimental data. AsaruSim employs a multi-step process that includes the creation of a synthetic count matrix, generation of perfect reads, optional PCR amplification, introduction of sequencing errors, and comprehensive quality control reporting. Applied to a dataset of human peripheral blood mononuclear cells, AsaruSim accurately reproduced experimental read characteristics.

Availability and implementation: The source code and full documentation are available at https://github.com/GenomiqueENS/AsaruSim.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信