James N Samsom, MengYi Xu, Ariel Ávila, Anastasios A Daskalakis, Jia Hong Dai, Xing Gao, John Georgiou, Graham L Collingridge, Fang Liu, Albert H C Wong
{"title":"Protein interacting with C-kinase 1 (PICK1) regulates synaptic function and reversal learning in a mouse model for schizophrenia.","authors":"James N Samsom, MengYi Xu, Ariel Ávila, Anastasios A Daskalakis, Jia Hong Dai, Xing Gao, John Georgiou, Graham L Collingridge, Fang Liu, Albert H C Wong","doi":"10.1038/s41386-025-02072-9","DOIUrl":null,"url":null,"abstract":"<p><p>Protein interacting with C-kinase 1 (PICK1) is important for synaptic plasticity through directing transport of glutamate receptors and other proteins. PICK1 gene variants have been associated with schizophrenia. To examine the role of PICK1 in schizophrenia-related behaviors, mice with a mutation in the PICK1 lipid-interacting BAR domain were characterized. Male Pick1-S262T mice had disrupted AMPA receptor (AMPAR) subunit GluA1 and GluA2 protein expression in the hippocampus and prefrontal cortex (PFC). Young adult, but not juvenile (P21), Pick1-S262T mice showed decreased hippocampal synaptic transmission and deficits in long-term depression (LTD). Mutant males also had deficits in reversal learning in the Morris water maze (MWM). These observations suggest that the Pick1-S262T mutation affects AMPAR trafficking, disrupting synaptic transmission and plasticity, as well as cognitive flexibility, a core neuropsychological deficit in schizophrenia. This work suggests possible mechanisms by which a known schizophrenia susceptibility gene could contribute to clinical features of the disorder.</p>","PeriodicalId":19143,"journal":{"name":"Neuropsychopharmacology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41386-025-02072-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Protein interacting with C-kinase 1 (PICK1) is important for synaptic plasticity through directing transport of glutamate receptors and other proteins. PICK1 gene variants have been associated with schizophrenia. To examine the role of PICK1 in schizophrenia-related behaviors, mice with a mutation in the PICK1 lipid-interacting BAR domain were characterized. Male Pick1-S262T mice had disrupted AMPA receptor (AMPAR) subunit GluA1 and GluA2 protein expression in the hippocampus and prefrontal cortex (PFC). Young adult, but not juvenile (P21), Pick1-S262T mice showed decreased hippocampal synaptic transmission and deficits in long-term depression (LTD). Mutant males also had deficits in reversal learning in the Morris water maze (MWM). These observations suggest that the Pick1-S262T mutation affects AMPAR trafficking, disrupting synaptic transmission and plasticity, as well as cognitive flexibility, a core neuropsychological deficit in schizophrenia. This work suggests possible mechanisms by which a known schizophrenia susceptibility gene could contribute to clinical features of the disorder.
期刊介绍:
Neuropsychopharmacology is a reputable international scientific journal that serves as the official publication of the American College of Neuropsychopharmacology (ACNP). The journal's primary focus is on research that enhances our knowledge of the brain and behavior, with a particular emphasis on the molecular, cellular, physiological, and psychological aspects of substances that affect the central nervous system (CNS). It also aims to identify new molecular targets for the development of future drugs.
The journal prioritizes original research reports, but it also welcomes mini-reviews and perspectives, which are often solicited by the editorial office. These types of articles provide valuable insights and syntheses of current research trends and future directions in the field of neuroscience and pharmacology.