Zachary Van Roy, Gunjan Kak, Rachel W Fallet, Tammy Kielian
{"title":"Interferon-gamma receptor signaling regulates innate immunity during Staphylococcus aureus craniotomy infection.","authors":"Zachary Van Roy, Gunjan Kak, Rachel W Fallet, Tammy Kielian","doi":"10.1186/s12974-025-03376-9","DOIUrl":null,"url":null,"abstract":"<p><p>A craniotomy is a neurosurgical procedure performed to access the intracranial space. In 3-5% of cases, infections can develop, most caused by Staphylococcus aureus biofilm formation on the skull surface. Medical management of this infection is difficult, as biofilm properties confer immune and antimicrobial recalcitrance to the infection and necessitate additional surgical procedures. Furthermore, treatment failure rates can be appreciably high. These factors, compounded with rapidly expanding rates of antimicrobial resistance, highlight the need to develop alternative treatment strategies to target and reverse the immune dysfunction that occurs during biofilm infection. Our recent work has identified CD4<sup>+</sup> Th1 and Th17 cells as potent regulators of innate immune cell activation during craniotomy infection. Here, we report the role of IFN-γ, versus other Th1- and Th17-derived cytokines, in programing the immune response to biofilm infection using both global and cell type-specific IFN-γR1-deficient (Ifngr1<sup>-/-</sup>) mice. Bacterial burdens were significantly higher in Ifngr1<sup>-/-</sup> relative to WT animals despite few changes in immune cell abundance. Single-cell transcriptomics identified candidate explanations for this phenotype as alterations in cell death pathways, innate immune cell activation, MHC-II expression, and T cell responses were significantly reduced in Ifngr1<sup>-/-</sup> mice. While caspase-1 activation in PMNs and macrophage/microglial MHC-II expression were regulated by IFN-γ signaling, no phenotypes were observed with either granulocyte- or macrophage/microglia Ifngr1<sup>-/-</sup> conditional knockout mice, suggestive of redundancy. Instead, a decreased Th1/Th17 ratio was identified in Ifngr1<sup>-/-</sup> animals that was corroborated by elevated IL-17 levels and correlated with dysfunctional T cell-innate immune communication. Further, Th17 cells were less effective than Th1 cells in promoting S. aureus bactericidal activity in microglia and macrophages. Collectively, this work identifies a key protective role for IFN-γ during craniotomy infection by enhancing macrophage and microglial antibacterial activity. Therefore, controlled programming of IFN-γ responses may represent a novel therapeutic strategy for chronic craniotomy infections.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"46"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03376-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A craniotomy is a neurosurgical procedure performed to access the intracranial space. In 3-5% of cases, infections can develop, most caused by Staphylococcus aureus biofilm formation on the skull surface. Medical management of this infection is difficult, as biofilm properties confer immune and antimicrobial recalcitrance to the infection and necessitate additional surgical procedures. Furthermore, treatment failure rates can be appreciably high. These factors, compounded with rapidly expanding rates of antimicrobial resistance, highlight the need to develop alternative treatment strategies to target and reverse the immune dysfunction that occurs during biofilm infection. Our recent work has identified CD4+ Th1 and Th17 cells as potent regulators of innate immune cell activation during craniotomy infection. Here, we report the role of IFN-γ, versus other Th1- and Th17-derived cytokines, in programing the immune response to biofilm infection using both global and cell type-specific IFN-γR1-deficient (Ifngr1-/-) mice. Bacterial burdens were significantly higher in Ifngr1-/- relative to WT animals despite few changes in immune cell abundance. Single-cell transcriptomics identified candidate explanations for this phenotype as alterations in cell death pathways, innate immune cell activation, MHC-II expression, and T cell responses were significantly reduced in Ifngr1-/- mice. While caspase-1 activation in PMNs and macrophage/microglial MHC-II expression were regulated by IFN-γ signaling, no phenotypes were observed with either granulocyte- or macrophage/microglia Ifngr1-/- conditional knockout mice, suggestive of redundancy. Instead, a decreased Th1/Th17 ratio was identified in Ifngr1-/- animals that was corroborated by elevated IL-17 levels and correlated with dysfunctional T cell-innate immune communication. Further, Th17 cells were less effective than Th1 cells in promoting S. aureus bactericidal activity in microglia and macrophages. Collectively, this work identifies a key protective role for IFN-γ during craniotomy infection by enhancing macrophage and microglial antibacterial activity. Therefore, controlled programming of IFN-γ responses may represent a novel therapeutic strategy for chronic craniotomy infections.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.