{"title":"Enhancing Functional Protein Design Using Heuristic Optimization and Deep Learning for Anti-Inflammatory and Gene Therapy Applications.","authors":"Ayşenur Soytürk Patat, Özkan Ufuk Nalbantoğlu","doi":"10.1002/prot.26810","DOIUrl":null,"url":null,"abstract":"<p><p>Protein sequence design is a highly challenging task, aimed at discovering new proteins that are more functional and producible under laboratory conditions than their natural counterparts. Deep learning-based approaches developed to address this problem have achieved significant success. However, these approaches often do not adequately emphasize the functional properties of proteins. In this study, we developed a heuristic optimization method to enhance key functionalities such as solubility, flexibility, and stability, while preserving the structural integrity of proteins. This method aims to reduce laboratory demands by enabling a design that is both functional and structurally sound. This approach is particularly valuable for the synthetic production of proteins with anti-inflammatory properties and those used in gene therapy. The designed proteins were initially evaluated for their ability to preserve natural structures using recovery and confidence metrics, followed by assessments with the AlphaFold tool. Additionally, natural protein sequences were mutated using a genetic algorithm and compared with those designed by our method. The results demonstrate that the protein sequences generated by our method exhibit much greater similarity to native protein sequences and structures. The code and sequences for the designed proteins are available at https://github.com/aysenursoyturk/HMHO.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":"1238-1256"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127714/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26810","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein sequence design is a highly challenging task, aimed at discovering new proteins that are more functional and producible under laboratory conditions than their natural counterparts. Deep learning-based approaches developed to address this problem have achieved significant success. However, these approaches often do not adequately emphasize the functional properties of proteins. In this study, we developed a heuristic optimization method to enhance key functionalities such as solubility, flexibility, and stability, while preserving the structural integrity of proteins. This method aims to reduce laboratory demands by enabling a design that is both functional and structurally sound. This approach is particularly valuable for the synthetic production of proteins with anti-inflammatory properties and those used in gene therapy. The designed proteins were initially evaluated for their ability to preserve natural structures using recovery and confidence metrics, followed by assessments with the AlphaFold tool. Additionally, natural protein sequences were mutated using a genetic algorithm and compared with those designed by our method. The results demonstrate that the protein sequences generated by our method exhibit much greater similarity to native protein sequences and structures. The code and sequences for the designed proteins are available at https://github.com/aysenursoyturk/HMHO.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.