Exosomes inhibit ferroptosis to alleviate intervertebral disc degeneration via the p62-KEAP1-NRF2 pathway

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chao Chen , Xuenan Wang , Yueqin Zhao , Xianle Duan , Yaoquan Hu , Zhengpin Lv , Qicong He , Zijiu Yangyang , Guishuai Wu , Haoyan Luo , Qianlin Zuo , Xiaojiang Hao , Yuhan Zhao , Xiao Ding , Fan Zhang
{"title":"Exosomes inhibit ferroptosis to alleviate intervertebral disc degeneration via the p62-KEAP1-NRF2 pathway","authors":"Chao Chen ,&nbsp;Xuenan Wang ,&nbsp;Yueqin Zhao ,&nbsp;Xianle Duan ,&nbsp;Yaoquan Hu ,&nbsp;Zhengpin Lv ,&nbsp;Qicong He ,&nbsp;Zijiu Yangyang ,&nbsp;Guishuai Wu ,&nbsp;Haoyan Luo ,&nbsp;Qianlin Zuo ,&nbsp;Xiaojiang Hao ,&nbsp;Yuhan Zhao ,&nbsp;Xiao Ding ,&nbsp;Fan Zhang","doi":"10.1016/j.freeradbiomed.2025.02.027","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroptosis, an iron-dependent form of regulated cell death, has been reported to affect the activity of nucleus pulposus (NP) cells in the intervertebral disc (IVD), thereby contributing to intervertebral disc degeneration (IVDD). Exosomes (EXOs), extracellular nanovesicles that participate in intercellular communication, are potential therapeutic options for IVDD. Interestingly, while EXOs play an important role in inhibiting ferroptosis, whether EXOs from mesenchymal stem cells (MSCs) modulate the progression of IVDD through regulating ferroptosis is unclear. To reveal the role of ferroptosis in IVDD, IVD tissues with varying degrees of degeneration were collected and abnormal expression of ferroptosis markers was detected. Ferroptotic death was observed in TBHP-induced NP cell death <em>in vitro</em>, which can be specifically inhibited by the ferroptosis inhibitors DFO and Fer-1. Interestingly, MSC-derived EXOs alleviated TBHP-induced or RSL3-induced ferroptosis and rescued NP cell degeneration. Mechanistically, either an NRF2 inhibitor or p62 knockdown dampened the inhibitory effects of EXOs on ferroptosis, suggesting that EXOs attenuated oxidative stress-induced ferroptosis in NP cells by regulating the p62/KEAP1/NRF2 axis. Moreover, EXOs effectively alleviated IVDD in an <em>in vivo</em> rat model. The current study revealed that ferroptosis is associated with the development of IVDD. MSC-derived EXOs slowed IVDD progression by inhibiting NP cell ferroptosis through the p62/KEAP1/NRF2 signaling pathway, suggesting that EXOs are a potential therapeutic option for IVDD.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"232 ","pages":"Pages 171-184"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584925001108","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis, an iron-dependent form of regulated cell death, has been reported to affect the activity of nucleus pulposus (NP) cells in the intervertebral disc (IVD), thereby contributing to intervertebral disc degeneration (IVDD). Exosomes (EXOs), extracellular nanovesicles that participate in intercellular communication, are potential therapeutic options for IVDD. Interestingly, while EXOs play an important role in inhibiting ferroptosis, whether EXOs from mesenchymal stem cells (MSCs) modulate the progression of IVDD through regulating ferroptosis is unclear. To reveal the role of ferroptosis in IVDD, IVD tissues with varying degrees of degeneration were collected and abnormal expression of ferroptosis markers was detected. Ferroptotic death was observed in TBHP-induced NP cell death in vitro, which can be specifically inhibited by the ferroptosis inhibitors DFO and Fer-1. Interestingly, MSC-derived EXOs alleviated TBHP-induced or RSL3-induced ferroptosis and rescued NP cell degeneration. Mechanistically, either an NRF2 inhibitor or p62 knockdown dampened the inhibitory effects of EXOs on ferroptosis, suggesting that EXOs attenuated oxidative stress-induced ferroptosis in NP cells by regulating the p62/KEAP1/NRF2 axis. Moreover, EXOs effectively alleviated IVDD in an in vivo rat model. The current study revealed that ferroptosis is associated with the development of IVDD. MSC-derived EXOs slowed IVDD progression by inhibiting NP cell ferroptosis through the p62/KEAP1/NRF2 signaling pathway, suggesting that EXOs are a potential therapeutic option for IVDD.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信