Tutorial on Conditional Simulations With a Tumor Size-Overall Survival Model to Support Oncology Drug Development.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Sebastiaan C Goulooze, Morris Muliaditan, Richard C Franzese, Alejandro Mantero, Sandra A G Visser, Murad Melhem, Teun M Post, Chetan Rathi, Herbert Struemper
{"title":"Tutorial on Conditional Simulations With a Tumor Size-Overall Survival Model to Support Oncology Drug Development.","authors":"Sebastiaan C Goulooze, Morris Muliaditan, Richard C Franzese, Alejandro Mantero, Sandra A G Visser, Murad Melhem, Teun M Post, Chetan Rathi, Herbert Struemper","doi":"10.1002/psp4.70003","DOIUrl":null,"url":null,"abstract":"<p><p>The gold standard for regulatory approval in oncology is overall survival (OS). Because OS data are initially limited, early drug development decisions are often based on early efficacy endpoints, such as objective response rate and progression-free survival. Tumor size (TS)-OS models provide a framework to support decision-making on potential late-stage success based on early readouts, through leveraging TS data with limited follow-up and treatment-agnostic TS-OS link functions, to predict longer-term OS. Conditional simulations (also known as Bayesian forecasting) with TS-OS models can be used to simulate long-term OS outcomes for an ongoing study, conditional on the available TS and OS data at interim data cuts of the same study. This tutorial provides a comprehensive overview of the steps involved in using such conditional simulations to support better informed drug development decisions in oncology. The tutorial covers the selection of the TS-OS framework model; applying the TS-OS model to the interim data; performing conditional simulations; generating relevant output; as well as correct interpretation and communication of the output for decision making.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.70003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The gold standard for regulatory approval in oncology is overall survival (OS). Because OS data are initially limited, early drug development decisions are often based on early efficacy endpoints, such as objective response rate and progression-free survival. Tumor size (TS)-OS models provide a framework to support decision-making on potential late-stage success based on early readouts, through leveraging TS data with limited follow-up and treatment-agnostic TS-OS link functions, to predict longer-term OS. Conditional simulations (also known as Bayesian forecasting) with TS-OS models can be used to simulate long-term OS outcomes for an ongoing study, conditional on the available TS and OS data at interim data cuts of the same study. This tutorial provides a comprehensive overview of the steps involved in using such conditional simulations to support better informed drug development decisions in oncology. The tutorial covers the selection of the TS-OS framework model; applying the TS-OS model to the interim data; performing conditional simulations; generating relevant output; as well as correct interpretation and communication of the output for decision making.

利用肿瘤大小-总体生存模型进行条件模拟以支持肿瘤药物开发教程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信