NR4A1 deficiency promotes carotid plaque vulnerability by activating integrated stress response via targeting Bcat1.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Long Chen, Yiping Shi, Danrui Xiao, Yijie Huang, Yangjing Jiang, Min Liang, Feng Liang, Jieyuan Xue, Haiping Chen, Zhitong Liu, Xia Wang, Fei Zhuang, Guo Zhou, Huanhuan Huo, Zhaohua Cai, Qin Shao, Ben He
{"title":"NR4A1 deficiency promotes carotid plaque vulnerability by activating integrated stress response via targeting Bcat1.","authors":"Long Chen, Yiping Shi, Danrui Xiao, Yijie Huang, Yangjing Jiang, Min Liang, Feng Liang, Jieyuan Xue, Haiping Chen, Zhitong Liu, Xia Wang, Fei Zhuang, Guo Zhou, Huanhuan Huo, Zhaohua Cai, Qin Shao, Ben He","doi":"10.1007/s00018-025-05602-2","DOIUrl":null,"url":null,"abstract":"<p><p>Rupture of vulnerable carotid atherosclerotic plaque is one of the leading causes of ischemic stroke. However, the mechanisms driving the transition from stable to vulnerable plaques have not yet been elucidated. NR4A1 is an orphan nuclear receptor that functions in various inflammatory diseases. To explore the role of NR4A1 in vulnerable plaque formation, we generated a vulnerable plaque mouse model by combining partial ligation of the left common carotid artery and left renal artery in ApoE<sup>-/-</sup> and ApoE<sup>-/-</sup>;NR4A1<sup>-/-</sup> mice. Our research revealed that NR4A1 deficiency significantly worsened the pathology of vulnerable plaque, increasing intraplaque hemorrhage, rupture with thrombus, and the occurrence of multilayer with discontinuity. Moreover, NR4A1 deficiency exacerbated macrophage infiltration, inflammation, and oxidative stress. Mechanistically, we identified Bcat1 as the target of NR4A1. NR4A1 modulated the integrated stress response (ISR) in macrophages by transcriptionally inhibiting Bcat1, thus influencing the progression of vulnerable plaque. ISR inhibitor GSK2606414 or Bcat1 inhibitor ERG240 significantly ameliorated atherosclerotic plaque formation and increased plaque stability. Notably, supplementation with Celastrol, an herbal extract, stabilized atherosclerotic plaques in mice. These findings suggest that NR4A1 deficiency exacerbates vulnerable plaque by activating ISR via targeting Bcat1. The NR4A1/Bcat1/ISR axis is therefore an important therapeutic target for stabilizing atherosclerotic plaque.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"91"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05602-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rupture of vulnerable carotid atherosclerotic plaque is one of the leading causes of ischemic stroke. However, the mechanisms driving the transition from stable to vulnerable plaques have not yet been elucidated. NR4A1 is an orphan nuclear receptor that functions in various inflammatory diseases. To explore the role of NR4A1 in vulnerable plaque formation, we generated a vulnerable plaque mouse model by combining partial ligation of the left common carotid artery and left renal artery in ApoE-/- and ApoE-/-;NR4A1-/- mice. Our research revealed that NR4A1 deficiency significantly worsened the pathology of vulnerable plaque, increasing intraplaque hemorrhage, rupture with thrombus, and the occurrence of multilayer with discontinuity. Moreover, NR4A1 deficiency exacerbated macrophage infiltration, inflammation, and oxidative stress. Mechanistically, we identified Bcat1 as the target of NR4A1. NR4A1 modulated the integrated stress response (ISR) in macrophages by transcriptionally inhibiting Bcat1, thus influencing the progression of vulnerable plaque. ISR inhibitor GSK2606414 or Bcat1 inhibitor ERG240 significantly ameliorated atherosclerotic plaque formation and increased plaque stability. Notably, supplementation with Celastrol, an herbal extract, stabilized atherosclerotic plaques in mice. These findings suggest that NR4A1 deficiency exacerbates vulnerable plaque by activating ISR via targeting Bcat1. The NR4A1/Bcat1/ISR axis is therefore an important therapeutic target for stabilizing atherosclerotic plaque.

NR4A1缺乏通过靶向Bcat1激活综合应激反应,促进颈动脉斑块易损性。
易损颈动脉粥样硬化斑块破裂是缺血性脑卒中的主要原因之一。然而,驱动从稳定斑块到易损斑块转变的机制尚未阐明。NR4A1是一种孤儿核受体,在各种炎症性疾病中起作用。为了探讨NR4A1在易损斑块形成中的作用,我们将ApoE-/-和ApoE-/-;NR4A1-/-小鼠的左颈总动脉和左肾动脉部分结扎,建立易损斑块小鼠模型。我们的研究发现,NR4A1缺乏显著加重了易损斑块的病理,增加了斑块内出血、血栓破裂和多层不连续性的发生。此外,NR4A1缺乏加重了巨噬细胞浸润、炎症和氧化应激。在机制上,我们确定Bcat1是NR4A1的靶标。NR4A1通过转录抑制Bcat1调节巨噬细胞的综合应激反应(integrated stress response, ISR),从而影响易损斑块的进展。ISR抑制剂GSK2606414或Bcat1抑制剂ERG240可显著改善动脉粥样硬化斑块形成并增加斑块稳定性。值得注意的是,补充Celastrol(一种草药提取物)可以稳定小鼠的动脉粥样硬化斑块。这些发现表明NR4A1缺乏通过靶向Bcat1激活ISR,从而加剧易损斑块。因此,NR4A1/Bcat1/ISR轴是稳定动脉粥样硬化斑块的重要治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信