Circulating exosomes in pediatric obstructive sleep apnea with or without neurocognitive deficits and their effects on a 3D-blood-brain barrier spheroid model

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Trupti Joshi , Yen On Chan , Zhuanhong Qiao , Leila Kheirandish-Gozal , David Gozal , Abdelnaby Khalyfa
{"title":"Circulating exosomes in pediatric obstructive sleep apnea with or without neurocognitive deficits and their effects on a 3D-blood-brain barrier spheroid model","authors":"Trupti Joshi ,&nbsp;Yen On Chan ,&nbsp;Zhuanhong Qiao ,&nbsp;Leila Kheirandish-Gozal ,&nbsp;David Gozal ,&nbsp;Abdelnaby Khalyfa","doi":"10.1016/j.expneurol.2025.115188","DOIUrl":null,"url":null,"abstract":"<div><div>Obstructive sleep apnea (OSA) in children is linked to cognitive impairments, potentially due to blood-brain barrier (BBB) dysfunction. Exosomes, small vesicles released by most cells, reflect cellular changes. This study examined the effects of exosomes from children with OSA, with or without cognitive deficits, on neurovascular unit (NVU) models. Twenty-six children were categorized into three groups: healthy controls (Cont, <em>n</em> = 6), OSA without cognitive deficits (OSA-NG, <em>n</em> = 10), and OSA with neurocognitive deficits (OSA-POS, n = 10). Plasma exosomes were characterized and applied to human 3D NVU spheroids for 24 h. Barrier integrity, permeability, and angiogenesis were assessed using trans-endothelial electrical resistance (TEER), tight junction integrity, and tube formation assays. Single-nucleus RNA sequencing (snRNA-seq) and bioinformatics, including CellChat analysis, identified intercellular signaling pathways. Results showed that exosomes from OSA-POS children disrupted TEER, increased permeability, and impaired ZO1 staining in spheroids, compared to the other groups. Both OSA-POS and OSA-NG exosomes increased permeability in NVU cells in monolayer and microfluidic BBB models. snRNA-seq analysis further revealed distinct cell clusters and pathways associated with the different groups. This 3D NVU spheroid model provides a robust platform to study BBB properties and the role of exosomes in OSA. These findings suggest that integrating snRNA-seq with exosome studies can uncover mechanisms underlying neurocognitive dysfunction in pediatric OSA, potentially leading to personalized therapeutic approaches.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"387 ","pages":"Article 115188"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488625000524","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Obstructive sleep apnea (OSA) in children is linked to cognitive impairments, potentially due to blood-brain barrier (BBB) dysfunction. Exosomes, small vesicles released by most cells, reflect cellular changes. This study examined the effects of exosomes from children with OSA, with or without cognitive deficits, on neurovascular unit (NVU) models. Twenty-six children were categorized into three groups: healthy controls (Cont, n = 6), OSA without cognitive deficits (OSA-NG, n = 10), and OSA with neurocognitive deficits (OSA-POS, n = 10). Plasma exosomes were characterized and applied to human 3D NVU spheroids for 24 h. Barrier integrity, permeability, and angiogenesis were assessed using trans-endothelial electrical resistance (TEER), tight junction integrity, and tube formation assays. Single-nucleus RNA sequencing (snRNA-seq) and bioinformatics, including CellChat analysis, identified intercellular signaling pathways. Results showed that exosomes from OSA-POS children disrupted TEER, increased permeability, and impaired ZO1 staining in spheroids, compared to the other groups. Both OSA-POS and OSA-NG exosomes increased permeability in NVU cells in monolayer and microfluidic BBB models. snRNA-seq analysis further revealed distinct cell clusters and pathways associated with the different groups. This 3D NVU spheroid model provides a robust platform to study BBB properties and the role of exosomes in OSA. These findings suggest that integrating snRNA-seq with exosome studies can uncover mechanisms underlying neurocognitive dysfunction in pediatric OSA, potentially leading to personalized therapeutic approaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Neurology
Experimental Neurology 医学-神经科学
CiteScore
10.10
自引率
3.80%
发文量
258
审稿时长
42 days
期刊介绍: Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信