PD98059 inhibit the proliferation and differentiation of osteoblasts in the formation of tympanosclerosis via ERK1/2-MAPK signaling pathway

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Yu Huang, Wenxia Huang, Gengtian Liang, Dou Liu, Chenhui He, Longkai Xiao, Xianting Gao
{"title":"PD98059 inhibit the proliferation and differentiation of osteoblasts in the formation of tympanosclerosis via ERK1/2-MAPK signaling pathway","authors":"Yu Huang,&nbsp;Wenxia Huang,&nbsp;Gengtian Liang,&nbsp;Dou Liu,&nbsp;Chenhui He,&nbsp;Longkai Xiao,&nbsp;Xianting Gao","doi":"10.1016/j.yexcr.2025.114437","DOIUrl":null,"url":null,"abstract":"<div><div>Tympanosclerosis (TS) has become a common pathological condition of the middle ear, but the underlying mechanism of it is still ambiguous. It was found that osteoprotegerin/receptor activator of nuclear factor kappa B ligand (OPG/RANKL) axis played an important role in the development of TS and was regulated by the extracellular signal regulated kinase 1/2-mitogen activated protein kinase (ERK1/2-MAPK) pathway. However, whether ERK1/2-MAPK pathway mediates the occurrence of TS by regulating OPG/RANKL axis has not been reported. In this study, MAPK and calcium pathway were found significantly activated in TS model. In vivo, the expression of p-ERK1/2 in TS model was significantly increased. In vitro, osteoblasts were isolated from auditory vesicles of neonatal rats for the first time, and then cultured with ERK1/2-MAPK pathway inhibitor PD98059. As results, PD98059 showed inhibitory effects on the phosphorylation of ERK1/2 and proliferation of osteoblasts. Besides, different concentrations of PD98059 showed different inhibitory effects on mRNA expression of osteocalcin (Ocn), bone sialoprotein (Bsp), runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (Bmp2) and OPG. Therefore, it was speculated that the ERK1/2-MAPK pathway may affect the formation of TS by regulating the proliferation and differentiation of osteoblasts, which may be helpful for the study of drug target for tympanosclerosis.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"447 1","pages":"Article 114437"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725000333","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tympanosclerosis (TS) has become a common pathological condition of the middle ear, but the underlying mechanism of it is still ambiguous. It was found that osteoprotegerin/receptor activator of nuclear factor kappa B ligand (OPG/RANKL) axis played an important role in the development of TS and was regulated by the extracellular signal regulated kinase 1/2-mitogen activated protein kinase (ERK1/2-MAPK) pathway. However, whether ERK1/2-MAPK pathway mediates the occurrence of TS by regulating OPG/RANKL axis has not been reported. In this study, MAPK and calcium pathway were found significantly activated in TS model. In vivo, the expression of p-ERK1/2 in TS model was significantly increased. In vitro, osteoblasts were isolated from auditory vesicles of neonatal rats for the first time, and then cultured with ERK1/2-MAPK pathway inhibitor PD98059. As results, PD98059 showed inhibitory effects on the phosphorylation of ERK1/2 and proliferation of osteoblasts. Besides, different concentrations of PD98059 showed different inhibitory effects on mRNA expression of osteocalcin (Ocn), bone sialoprotein (Bsp), runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (Bmp2) and OPG. Therefore, it was speculated that the ERK1/2-MAPK pathway may affect the formation of TS by regulating the proliferation and differentiation of osteoblasts, which may be helpful for the study of drug target for tympanosclerosis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental cell research
Experimental cell research 医学-细胞生物学
CiteScore
7.20
自引率
0.00%
发文量
295
审稿时长
30 days
期刊介绍: Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信