Research Progress of Colloidal Chemistry and Rheological Dynamics for Printable Perovskite Photovoltaics

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chenxiang Gong, Cong Wang, Baojin Fan, Xiangchuan Meng, Siyi Shi, Ting Hu, Xiaotian Hu, Yiwang Chen
{"title":"Research Progress of Colloidal Chemistry and Rheological Dynamics for Printable Perovskite Photovoltaics","authors":"Chenxiang Gong,&nbsp;Cong Wang,&nbsp;Baojin Fan,&nbsp;Xiangchuan Meng,&nbsp;Siyi Shi,&nbsp;Ting Hu,&nbsp;Xiaotian Hu,&nbsp;Yiwang Chen","doi":"10.1002/adom.202402521","DOIUrl":null,"url":null,"abstract":"<p>The efficiency of solar cells based on organic–inorganic hybrid perovskite materials has already met the standards for commercial applications. However, there remains an efficiency gap of ≈30% between small-area devices and industrial-scale devices. Large-area devices, in particular, tend to exhibit lower optoelectronics and reduced environmental stability. The ink fluid behavior significantly influences the crystal process of large-area perovskite films during printing fabrication, which cannot be disregarded. As the manufacturing area and total solvent volatilization increase, the impact of inhomogeneous migration by perovskite colloidal particles gradually intensifies. This work focuses on elucidating the impact of the rheological properties of perovskite colloidal particles on the crystalline quality and device optoelectronic performance of perovskite films during deposition. It explores the fluid behavior of colloidal particles in the ink and throughout the printing process, the effects of additives on the motion of perovskite colloidal particles, and how the ink's rheological properties change when modifying agents interact with perovskite particles. Additionally, the functional aspects of controlling perovskite film formation and optimizing photovoltaic performance in perovskite solar cells (PSCs) are thoroughly discussed. Ultimately, the preparation process improvement of perovskite precursor solution and the current technical barriers to commercialization are summarized and prospected.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 6","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402521","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficiency of solar cells based on organic–inorganic hybrid perovskite materials has already met the standards for commercial applications. However, there remains an efficiency gap of ≈30% between small-area devices and industrial-scale devices. Large-area devices, in particular, tend to exhibit lower optoelectronics and reduced environmental stability. The ink fluid behavior significantly influences the crystal process of large-area perovskite films during printing fabrication, which cannot be disregarded. As the manufacturing area and total solvent volatilization increase, the impact of inhomogeneous migration by perovskite colloidal particles gradually intensifies. This work focuses on elucidating the impact of the rheological properties of perovskite colloidal particles on the crystalline quality and device optoelectronic performance of perovskite films during deposition. It explores the fluid behavior of colloidal particles in the ink and throughout the printing process, the effects of additives on the motion of perovskite colloidal particles, and how the ink's rheological properties change when modifying agents interact with perovskite particles. Additionally, the functional aspects of controlling perovskite film formation and optimizing photovoltaic performance in perovskite solar cells (PSCs) are thoroughly discussed. Ultimately, the preparation process improvement of perovskite precursor solution and the current technical barriers to commercialization are summarized and prospected.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信