Adilson Fonseca Teixeira, Bruno Ricardo Barreto Pires, Carolina Panis, Andréa Monte-Alto-Costa, Adenilson de Souza da Fonseca, Andre Luiz Mencalha
{"title":"Low-Power Blue LED Modulates NF-κB and Proinflammatory Cytokines in Doxorubicin-Treated MDA-MB-231 Cells","authors":"Adilson Fonseca Teixeira, Bruno Ricardo Barreto Pires, Carolina Panis, Andréa Monte-Alto-Costa, Adenilson de Souza da Fonseca, Andre Luiz Mencalha","doi":"10.1002/jbt.70192","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Doxorubicin is a crucial chemotherapy used in the treatment of triple-negative breast cancer (TNBC) patients, but elevated doxorubicin doses may induce therapeutic resistance. To overcome this limitation, we have previously established a photodynamic therapeutic (PDT)-like strategy that irradiates doxorubicin-treated cells with a low-power nonionizing blue LED device. This combined treatment increases the production of reactive oxygen species to promote cell death, consequently enabling reduced doxorubicin dosages. Yet, precisely determining the molecular mechanisms that drive this outcome is still required for advancing such PDT-like approach. Here, we aimed to correlate the expression of the inflammatory markers NF-κB, IL-8, IL-6, and IL-1β with the survival of TNBC cells submitted to our PDT-like protocol. Our results show that NF-κB/p65 nuclear levels were enhanced in MDA-MB-231 cells treated with doxorubicin and blue LED. Moreover, this PDT-like strategy increased IL-6 mRNA levels in MDA-MB-231 cells. IL-1β and IL-8 mRNA were upregulated in samples incubated with doxorubicin regardless of concomitant irradiation with blue LED. These results show that our PDT-like protocol is effective in elevating inflammatory signals, shedding light on the molecular mechanisms that underlie the efficacy of this innovative anticancer therapeutic approach.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 3","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70192","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Doxorubicin is a crucial chemotherapy used in the treatment of triple-negative breast cancer (TNBC) patients, but elevated doxorubicin doses may induce therapeutic resistance. To overcome this limitation, we have previously established a photodynamic therapeutic (PDT)-like strategy that irradiates doxorubicin-treated cells with a low-power nonionizing blue LED device. This combined treatment increases the production of reactive oxygen species to promote cell death, consequently enabling reduced doxorubicin dosages. Yet, precisely determining the molecular mechanisms that drive this outcome is still required for advancing such PDT-like approach. Here, we aimed to correlate the expression of the inflammatory markers NF-κB, IL-8, IL-6, and IL-1β with the survival of TNBC cells submitted to our PDT-like protocol. Our results show that NF-κB/p65 nuclear levels were enhanced in MDA-MB-231 cells treated with doxorubicin and blue LED. Moreover, this PDT-like strategy increased IL-6 mRNA levels in MDA-MB-231 cells. IL-1β and IL-8 mRNA were upregulated in samples incubated with doxorubicin regardless of concomitant irradiation with blue LED. These results show that our PDT-like protocol is effective in elevating inflammatory signals, shedding light on the molecular mechanisms that underlie the efficacy of this innovative anticancer therapeutic approach.
期刊介绍:
The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.