Beibei Chen, Jianwu Li, Shuaibing Yao, Geliang Wang, Xuemin Wang
{"title":"Seed-specific expression of phosphatidate phosphohydrolases increases soybean oil content and seed weight","authors":"Beibei Chen, Jianwu Li, Shuaibing Yao, Geliang Wang, Xuemin Wang","doi":"10.1186/s13068-025-02620-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Soybean is a major oil crop and a primary protein source for livestock, and soybean oil is the most common input for biodiesel. Identifying genes that enhance soybean yield and oil content is crucial for breeding programs. Phosphatidic acid (PA) phosphohydrolase (PAH), which dephosphorylates PA to diacylglycerol (DAG), plays a critical role in lipid synthesis, and yet their potential in improving agronomic traits of oil crops remains unexplored.</p><h3>Results</h3><p>This study shows that seed-specific expression of <i>AtPAH1/2</i> enhances PA turnover into DAG and triacylglycerol (TAG) accumulation in soybean seeds. <i>PAH</i> overexpression upregulated the expression of DAG acyltransferase (<i>DGAT</i>) but suppressed phospholipid: DAG acyltransferase (<i>PDAT</i>). In addition, seed-specific expression of <i>AtPAH1/2</i> increases soybean seed size and weight. Furthermore, analysis of the variation of the soybean PAHs in 4414 soybean accessions indicated that the advantageous effects of <i>GmPAH</i>s on oil content and seed weight were selected during domestication.</p><h3>Conclusion</h3><p>These findings suggest that targeting <i>PAH</i>s represents a promising strategy for enhancing soybean seed oil content and yield in current cultivars and landraces soybeans.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://biotechnologyforbiofuels.biomedcentral.com/counter/pdf/10.1186/s13068-025-02620-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02620-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Soybean is a major oil crop and a primary protein source for livestock, and soybean oil is the most common input for biodiesel. Identifying genes that enhance soybean yield and oil content is crucial for breeding programs. Phosphatidic acid (PA) phosphohydrolase (PAH), which dephosphorylates PA to diacylglycerol (DAG), plays a critical role in lipid synthesis, and yet their potential in improving agronomic traits of oil crops remains unexplored.
Results
This study shows that seed-specific expression of AtPAH1/2 enhances PA turnover into DAG and triacylglycerol (TAG) accumulation in soybean seeds. PAH overexpression upregulated the expression of DAG acyltransferase (DGAT) but suppressed phospholipid: DAG acyltransferase (PDAT). In addition, seed-specific expression of AtPAH1/2 increases soybean seed size and weight. Furthermore, analysis of the variation of the soybean PAHs in 4414 soybean accessions indicated that the advantageous effects of GmPAHs on oil content and seed weight were selected during domestication.
Conclusion
These findings suggest that targeting PAHs represents a promising strategy for enhancing soybean seed oil content and yield in current cultivars and landraces soybeans.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis