{"title":"A bound- and positivity-preserving path-conservative discontinuous Galerkin method for compressible two-medium flows","authors":"Haiyun Wang , Hongqiang Zhu , Zhen Gao","doi":"10.1016/j.jcp.2025.113867","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a high-order path-conservative Runge-Kutta discontinuous Galerkin method to simulate compressible two-medium flows by solving a <em>γ</em>-based model with the stiffened equation of state. The main contributions are as follows. Firstly, the path-conservative discontinuous Galerkin method is used to solve the <em>γ</em>-based model and is able to preserve uniform velocity and pressure fields around an isolated material interface. Secondly, a conservative-variables-based affine-invariant weighted essentially non-oscillatory limiter is employed to suppress nonlinear instability in the vicinity of discontinuities. Furthermore, an adaptive local Lax-Friedrichs numerical flux is adopted to improve the numerical resolutions. Last but not least, a bound- and positivity-preserving limiting strategy with strict theoretical analysis is developed for the stiffened equation of state to avoid the occurrence of inadmissible solutions while improving the robustness of the simulations. The <em>h</em>-adaptive Cartesian mesh is used for the numerical experiments to verify the validity of proposed method, and the numerical results of various one- and two-dimensional benchmark test cases demonstrate that the proposed method can efficiently and accurately handle complex two-phase flow problems involving pronounced interface deformations and large pressure ratios up to 10<sup>5</sup>.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"529 ","pages":"Article 113867"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125001500","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a high-order path-conservative Runge-Kutta discontinuous Galerkin method to simulate compressible two-medium flows by solving a γ-based model with the stiffened equation of state. The main contributions are as follows. Firstly, the path-conservative discontinuous Galerkin method is used to solve the γ-based model and is able to preserve uniform velocity and pressure fields around an isolated material interface. Secondly, a conservative-variables-based affine-invariant weighted essentially non-oscillatory limiter is employed to suppress nonlinear instability in the vicinity of discontinuities. Furthermore, an adaptive local Lax-Friedrichs numerical flux is adopted to improve the numerical resolutions. Last but not least, a bound- and positivity-preserving limiting strategy with strict theoretical analysis is developed for the stiffened equation of state to avoid the occurrence of inadmissible solutions while improving the robustness of the simulations. The h-adaptive Cartesian mesh is used for the numerical experiments to verify the validity of proposed method, and the numerical results of various one- and two-dimensional benchmark test cases demonstrate that the proposed method can efficiently and accurately handle complex two-phase flow problems involving pronounced interface deformations and large pressure ratios up to 105.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.