Structured backward errors for block three-by-three saddle point systems with Hermitian and sparsity block matrices

IF 1.4 Q2 MATHEMATICS, APPLIED
Bing Tan, Wei Ma
{"title":"Structured backward errors for block three-by-three saddle point systems with Hermitian and sparsity block matrices","authors":"Bing Tan,&nbsp;Wei Ma","doi":"10.1016/j.rinam.2025.100546","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we explore the structured backward errors for a class of block three-by-three saddle point systems with Hermitian and sparsity block matrices. We derive an explicit formula for the structured backward errors under the assumption that the inherent matrix structure and sparsity pattern are maintained in the associated perturbation. Moreover, the optimal backward perturbation matrix for achieving structured backward error is constructed. Our analysis further explores the structured backward error when the sparsity structure is not preserved. Numerical experiments show that the computable formulas of structured backward errors are useful for testing the stability of practical algorithms.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"25 ","pages":"Article 100546"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742500010X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore the structured backward errors for a class of block three-by-three saddle point systems with Hermitian and sparsity block matrices. We derive an explicit formula for the structured backward errors under the assumption that the inherent matrix structure and sparsity pattern are maintained in the associated perturbation. Moreover, the optimal backward perturbation matrix for achieving structured backward error is constructed. Our analysis further explores the structured backward error when the sparsity structure is not preserved. Numerical experiments show that the computable formulas of structured backward errors are useful for testing the stability of practical algorithms.
具有厄米矩阵和稀疏分块矩阵的块3乘3鞍点系统的结构向后误差
本文研究了一类具有厄米矩阵和稀疏块矩阵的3 × 3块鞍点系统的结构后向误差。在相关扰动保持固有矩阵结构和稀疏模式的前提下,导出了结构后向误差的显式公式。此外,构造了实现结构化后向误差的最优后向扰动矩阵。我们的分析进一步探讨了不保留稀疏性结构时的结构化后向误差。数值实验表明,所建立的结构化后向误差计算公式可用于检验实际算法的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信