Hong Bo, Rui Cheng, Yanwei Han, Xudong Chen, Li-min Wang
{"title":"Experimental investigation and thermodynamic modeling of the Co-Ni-B system","authors":"Hong Bo, Rui Cheng, Yanwei Han, Xudong Chen, Li-min Wang","doi":"10.1016/j.calphad.2025.102804","DOIUrl":null,"url":null,"abstract":"<div><div>As a ternary subsystem of the high-temperature bulk metallic glass system, the Co-Ni-B system was systematically studied through both experimentation and thermodynamic modeling. Using equilibrated alloys, the isothermal section at 1073 K was investigated via electron probe microanalyzer (EPMA) equipped with wavelength dispersive spectrometer (WDS) and x-ray diffraction (XRD). Differential scanning calorimetry (DSC) tests were also conducted to determine the phase transition temperatures. By combining the experimental data and first-principles calculation results from this work, the Co-Ni-B system was thermodynamically optimized with the CALculation of PHAse Diagram (CALPHAD) method. The calculated isothermal section, vertical section and liquidus projection accounted for the experimental data successfully. This study provides a foundation for establishing a multi-component thermodynamic database that includes Co-Ni-B and facilitates the design of novel high-temperature metallic glasses.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"88 ","pages":"Article 102804"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591625000070","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As a ternary subsystem of the high-temperature bulk metallic glass system, the Co-Ni-B system was systematically studied through both experimentation and thermodynamic modeling. Using equilibrated alloys, the isothermal section at 1073 K was investigated via electron probe microanalyzer (EPMA) equipped with wavelength dispersive spectrometer (WDS) and x-ray diffraction (XRD). Differential scanning calorimetry (DSC) tests were also conducted to determine the phase transition temperatures. By combining the experimental data and first-principles calculation results from this work, the Co-Ni-B system was thermodynamically optimized with the CALculation of PHAse Diagram (CALPHAD) method. The calculated isothermal section, vertical section and liquidus projection accounted for the experimental data successfully. This study provides a foundation for establishing a multi-component thermodynamic database that includes Co-Ni-B and facilitates the design of novel high-temperature metallic glasses.
期刊介绍:
The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.