Data-driven ambiguous cognitive map for complex decision-making in supply chain management

Pritpal Singh
{"title":"Data-driven ambiguous cognitive map for complex decision-making in supply chain management","authors":"Pritpal Singh","doi":"10.1016/j.jcmds.2025.100110","DOIUrl":null,"url":null,"abstract":"<div><div>Fuzzy cognitive maps (FCMs) have the potential to model complex systems, but they face challenges in uncertainty, complexity, and dynamic conditions. This study tackles three main issues: modeling and quantifying uncertainty in relationships and weights with imprecise inputs, managing the complexity as the number of activation levels and causal relationships increases, and determining appropriate weights and thresholds in uncertain contexts. By using ambiguous set theory, the research introduces the ambiguous cognitive map (ACM) to improve the traditional FCM and address these problems. This theory allows for the representation of states with four membership values: true, false, partially true, and partially false, which provides a more refined approach to managing uncertainty. Mathematical formulas are employed by ACM to calculate weights based on these membership values instead of randomly selecting. The introduction of rank allows for the identification of the most influential state by its highest rank in priority decisions. The application of ACM in decision-making scenarios related to the supply chain system demonstrates its efficiency in systematically prioritizing and resolving complex decisions. The ACM effectively identifies key variables and provides actionable rankings to support decision-making in the supply chain system. The results demonstrate that ACM offers a systematic approach to resolving complex decisions under uncertainty.</div><div><strong>Impact Statement</strong> ACMs replace the conventional random assignment of relationship weights with a mathematical formulation based on the four membership values, enhancing the accuracy and reliability of the modeled system. The study also introduces a rank-based decision-making process, where the most influential state is determined by the highest rank derived from the membership values. The proposed ACM framework not only addresses the limitations of traditional FCMs but also opens new avenues for artificial intelligence (AI)-driven analysis of complex, uncertain systems.</div></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"14 ","pages":"Article 100110"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415825000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fuzzy cognitive maps (FCMs) have the potential to model complex systems, but they face challenges in uncertainty, complexity, and dynamic conditions. This study tackles three main issues: modeling and quantifying uncertainty in relationships and weights with imprecise inputs, managing the complexity as the number of activation levels and causal relationships increases, and determining appropriate weights and thresholds in uncertain contexts. By using ambiguous set theory, the research introduces the ambiguous cognitive map (ACM) to improve the traditional FCM and address these problems. This theory allows for the representation of states with four membership values: true, false, partially true, and partially false, which provides a more refined approach to managing uncertainty. Mathematical formulas are employed by ACM to calculate weights based on these membership values instead of randomly selecting. The introduction of rank allows for the identification of the most influential state by its highest rank in priority decisions. The application of ACM in decision-making scenarios related to the supply chain system demonstrates its efficiency in systematically prioritizing and resolving complex decisions. The ACM effectively identifies key variables and provides actionable rankings to support decision-making in the supply chain system. The results demonstrate that ACM offers a systematic approach to resolving complex decisions under uncertainty.
Impact Statement ACMs replace the conventional random assignment of relationship weights with a mathematical formulation based on the four membership values, enhancing the accuracy and reliability of the modeled system. The study also introduces a rank-based decision-making process, where the most influential state is determined by the highest rank derived from the membership values. The proposed ACM framework not only addresses the limitations of traditional FCMs but also opens new avenues for artificial intelligence (AI)-driven analysis of complex, uncertain systems.
数据驱动的供应链复杂决策模糊认知图
模糊认知图(fcm)具有模拟复杂系统的潜力,但在不确定性、复杂性和动态条件下面临挑战。本研究解决了三个主要问题:不精确输入的关系和权重的不确定性建模和量化,随着激活水平和因果关系数量的增加而管理复杂性,以及在不确定环境中确定适当的权重和阈值。本研究利用模糊集合理论,引入模糊认知图(ACM)来改进传统的FCM,解决这些问题。该理论允许用四个成员值表示状态:真、假、部分真和部分假,这为管理不确定性提供了更精细的方法。ACM采用数学公式来计算基于这些隶属度值的权重,而不是随机选择。排名的引入允许根据其在优先决策中的最高排名来确定最具影响力的国家。ACM在与供应链系统相关的决策场景中的应用证明了它在系统地确定优先级和解决复杂决策方面的效率。ACM有效地识别关键变量,并提供可操作的排名,以支持供应链系统中的决策。结果表明,ACM提供了一种系统的方法来解决不确定性下的复杂决策。影响陈述模型用基于四个隶属度值的数学公式取代了传统的随机分配关系权重的方法,提高了建模系统的准确性和可靠性。该研究还引入了基于排名的决策过程,其中最具影响力的国家由成员值得出的最高排名确定。提出的ACM框架不仅解决了传统fcm的局限性,而且为人工智能(AI)驱动的复杂、不确定系统的分析开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信