Large aperture nano-colloidal lenses with dual-hole electrodes for reduced image distortion

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Sahul Hameed Syed Ali, Seung-Ho Hong, Jang-Kun Song
{"title":"Large aperture nano-colloidal lenses with dual-hole electrodes for reduced image distortion","authors":"Sahul Hameed Syed Ali,&nbsp;Seung-Ho Hong,&nbsp;Jang-Kun Song","doi":"10.1016/j.displa.2025.103004","DOIUrl":null,"url":null,"abstract":"<div><div>Focus-tunable lenses without mechanical components are highly beneficial across various fields, including augmented reality (AR) devices, yet achieving a practical level of this technology is challenging. Recently, nano-colloidal lenses employing two-dimensional (2D) ZrP nanoparticles have been proposed as a simple and promising method to develop an electric-field-induced focus-tunable lens system. In this study, we investigate the relationship between the electrode design of nano-colloidal lenses and their performance, particularly in terms of focal length tunability and image distortion. In previous designs, increasing the lens size led to significant image distortion. To address this issue, we introduced a dual-hole electrode design and optimized the electrode size. This modification resulted in a wider focal length tunability and minimized image distortion, even in larger lenses. Additionally, we experimentally measured the refractive index variation and approximated the nanoparticle distribution to further optimize the lens’s focal length and image distortion. Consequently, this study provides a comprehensive model for designing nano-colloidal lenses and electrodes, paving the way for their use in various applications.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"88 ","pages":"Article 103004"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000411","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Focus-tunable lenses without mechanical components are highly beneficial across various fields, including augmented reality (AR) devices, yet achieving a practical level of this technology is challenging. Recently, nano-colloidal lenses employing two-dimensional (2D) ZrP nanoparticles have been proposed as a simple and promising method to develop an electric-field-induced focus-tunable lens system. In this study, we investigate the relationship between the electrode design of nano-colloidal lenses and their performance, particularly in terms of focal length tunability and image distortion. In previous designs, increasing the lens size led to significant image distortion. To address this issue, we introduced a dual-hole electrode design and optimized the electrode size. This modification resulted in a wider focal length tunability and minimized image distortion, even in larger lenses. Additionally, we experimentally measured the refractive index variation and approximated the nanoparticle distribution to further optimize the lens’s focal length and image distortion. Consequently, this study provides a comprehensive model for designing nano-colloidal lenses and electrodes, paving the way for their use in various applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信