{"title":"Benzothiazolin-2-ylidene gold(I) complexes as precursors for gold nanoparticles","authors":"Matteo Bevilacqua , Giulia Saggiotti , Piermaria Pinter , Bernd Morgenstern , Dominik Munz , Andrea Biffis","doi":"10.1016/j.jorganchem.2025.123575","DOIUrl":null,"url":null,"abstract":"<div><div>The preparation of gold(I) complexes with benzothiazolin-2-ylidene ligands is described herein. These previously unreported complexes can be conveniently prepared from the corresponding benzothiazolium precursors using the so-called weak base route and have been spectroscopically and structurally characterized. Combined structural and computational analysis confirms enhanced π-accepting character of benzothiazolin-2-ylidine ligands in comparison with conventional (benz)imidazolin-based NHCs. The obtained complexes are reasonably stable and have been used as precursors for ligand-stabilized gold nanoparticles by controlled reduction with potassium hydride. The reaction produces 3 nm sized gold nanoparticles that are stable in solution as well as in the solid state and can be characterized both spectroscopically (NMR, UV–Vis) and by transmission electron microscopy (TEM).</div></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1030 ","pages":"Article 123575"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X25000695","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The preparation of gold(I) complexes with benzothiazolin-2-ylidene ligands is described herein. These previously unreported complexes can be conveniently prepared from the corresponding benzothiazolium precursors using the so-called weak base route and have been spectroscopically and structurally characterized. Combined structural and computational analysis confirms enhanced π-accepting character of benzothiazolin-2-ylidine ligands in comparison with conventional (benz)imidazolin-based NHCs. The obtained complexes are reasonably stable and have been used as precursors for ligand-stabilized gold nanoparticles by controlled reduction with potassium hydride. The reaction produces 3 nm sized gold nanoparticles that are stable in solution as well as in the solid state and can be characterized both spectroscopically (NMR, UV–Vis) and by transmission electron microscopy (TEM).
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.