Introduction to average Hamiltonian theory. II. Advanced examples

IF 2.624
Andreas Brinkmann
{"title":"Introduction to average Hamiltonian theory. II. Advanced examples","authors":"Andreas Brinkmann","doi":"10.1016/j.jmro.2025.100191","DOIUrl":null,"url":null,"abstract":"<div><div>Where the first part of our tutorial <em>Introduction to average Hamiltonian theory</em> (Brinkmann, 2016) introduced in detail the basic concepts and demonstrated the application to two composite radio-frequency (rf) pulses in nuclear magnetic resonance (NMR) spectroscopy, this second part will present in a comprehensive but educational manner two, more advanced examples for the application of average Hamiltonian theory in solid-state NMR spectroscopy, both to analyse and design rf pulse sequences: (i) The Rotational-Echo Double Resonance (REDOR) sequence, which recouples the heteronuclear dipolar coupling during sample rotation around an axis at the magic-angle of <span><math><mrow><mn>54</mn><mo>.</mo><mn>7</mn><msup><mrow><mn>4</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span> with respect to the external static magnetic field. We will gradually increase the complexity of applying average Hamiltonian theory by first considering ideal, infinitesimally short rf pulses. Next, we will examine finite pulses with an rf phase of zero, and finally, we will explore finite pulses with arbitrary rf phases. In the latter case, if a first order average Hamiltonian proportional to heteronuclear longitudinal two-spin order (<span><math><mrow><mn>2</mn><msub><mrow><mi>I</mi></mrow><mrow><mi>z</mi></mrow></msub><msub><mrow><mi>S</mi></mrow><mrow><mi>z</mi></mrow></msub></mrow></math></span>) is desired, solutions for the choice of rf phases include the XY and MLEV type schemes. (ii) The Lee–Goldburg homonuclear dipolar decoupling sequence under static samples conditions and its improved successors, Flip-Flop Lee–Goldburg (FFLG) and Frequency-Switched Lee–Goldburg (FSLG).</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"23 ","pages":"Article 100191"},"PeriodicalIF":2.6240,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266644102500007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Where the first part of our tutorial Introduction to average Hamiltonian theory (Brinkmann, 2016) introduced in detail the basic concepts and demonstrated the application to two composite radio-frequency (rf) pulses in nuclear magnetic resonance (NMR) spectroscopy, this second part will present in a comprehensive but educational manner two, more advanced examples for the application of average Hamiltonian theory in solid-state NMR spectroscopy, both to analyse and design rf pulse sequences: (i) The Rotational-Echo Double Resonance (REDOR) sequence, which recouples the heteronuclear dipolar coupling during sample rotation around an axis at the magic-angle of 54.74 with respect to the external static magnetic field. We will gradually increase the complexity of applying average Hamiltonian theory by first considering ideal, infinitesimally short rf pulses. Next, we will examine finite pulses with an rf phase of zero, and finally, we will explore finite pulses with arbitrary rf phases. In the latter case, if a first order average Hamiltonian proportional to heteronuclear longitudinal two-spin order (2IzSz) is desired, solutions for the choice of rf phases include the XY and MLEV type schemes. (ii) The Lee–Goldburg homonuclear dipolar decoupling sequence under static samples conditions and its improved successors, Flip-Flop Lee–Goldburg (FFLG) and Frequency-Switched Lee–Goldburg (FSLG).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信