Introduction to average Hamiltonian theory. II. Advanced examples

IF 2.624
Andreas Brinkmann
{"title":"Introduction to average Hamiltonian theory. II. Advanced examples","authors":"Andreas Brinkmann","doi":"10.1016/j.jmro.2025.100191","DOIUrl":null,"url":null,"abstract":"<div><div>Where the first part of our tutorial <em>Introduction to average Hamiltonian theory</em> (Brinkmann, 2016) introduced in detail the basic concepts and demonstrated the application to two composite radio-frequency (rf) pulses in nuclear magnetic resonance (NMR) spectroscopy, this second part will present in a comprehensive but educational manner two, more advanced examples for the application of average Hamiltonian theory in solid-state NMR spectroscopy, both to analyse and design rf pulse sequences: (i) The Rotational-Echo Double Resonance (REDOR) sequence, which recouples the heteronuclear dipolar coupling during sample rotation around an axis at the magic-angle of <span><math><mrow><mn>54</mn><mo>.</mo><mn>7</mn><msup><mrow><mn>4</mn></mrow><mrow><mo>∘</mo></mrow></msup></mrow></math></span> with respect to the external static magnetic field. We will gradually increase the complexity of applying average Hamiltonian theory by first considering ideal, infinitesimally short rf pulses. Next, we will examine finite pulses with an rf phase of zero, and finally, we will explore finite pulses with arbitrary rf phases. In the latter case, if a first order average Hamiltonian proportional to heteronuclear longitudinal two-spin order (<span><math><mrow><mn>2</mn><msub><mrow><mi>I</mi></mrow><mrow><mi>z</mi></mrow></msub><msub><mrow><mi>S</mi></mrow><mrow><mi>z</mi></mrow></msub></mrow></math></span>) is desired, solutions for the choice of rf phases include the XY and MLEV type schemes. (ii) The Lee–Goldburg homonuclear dipolar decoupling sequence under static samples conditions and its improved successors, Flip-Flop Lee–Goldburg (FFLG) and Frequency-Switched Lee–Goldburg (FSLG).</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"23 ","pages":"Article 100191"},"PeriodicalIF":2.6240,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266644102500007X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Where the first part of our tutorial Introduction to average Hamiltonian theory (Brinkmann, 2016) introduced in detail the basic concepts and demonstrated the application to two composite radio-frequency (rf) pulses in nuclear magnetic resonance (NMR) spectroscopy, this second part will present in a comprehensive but educational manner two, more advanced examples for the application of average Hamiltonian theory in solid-state NMR spectroscopy, both to analyse and design rf pulse sequences: (i) The Rotational-Echo Double Resonance (REDOR) sequence, which recouples the heteronuclear dipolar coupling during sample rotation around an axis at the magic-angle of 54.74 with respect to the external static magnetic field. We will gradually increase the complexity of applying average Hamiltonian theory by first considering ideal, infinitesimally short rf pulses. Next, we will examine finite pulses with an rf phase of zero, and finally, we will explore finite pulses with arbitrary rf phases. In the latter case, if a first order average Hamiltonian proportional to heteronuclear longitudinal two-spin order (2IzSz) is desired, solutions for the choice of rf phases include the XY and MLEV type schemes. (ii) The Lee–Goldburg homonuclear dipolar decoupling sequence under static samples conditions and its improved successors, Flip-Flop Lee–Goldburg (FFLG) and Frequency-Switched Lee–Goldburg (FSLG).

Abstract Image

平均哈密顿理论导论。2。先进的例子
我们的教程《平均哈密顿理论介绍》(Brinkmann, 2016)的第一部分详细介绍了基本概念,并演示了在核磁共振(NMR)光谱中的两个复合射频(rf)脉冲的应用,第二部分将以全面但具有教育意义的方式呈现两个更高级的例子,用于平均哈密顿理论在固态核磁共振光谱中的应用,包括分析和设计rf脉冲序列。(i)旋转回声双共振(REDOR)序列,在样品相对于外部静态磁场以54.74°的魔角绕轴旋转时,将异核偶极耦合重新耦合起来。我们将通过首先考虑理想的、无限短的射频脉冲来逐渐增加应用平均哈密顿理论的复杂性。接下来,我们将研究射频相位为零的有限脉冲,最后,我们将探索具有任意射频相位的有限脉冲。在后一种情况下,如果期望与异核纵向双自旋阶(2IzSz)成比例的一阶平均哈密顿量,则射频相位选择的解包括XY和MLEV型格式。(ii)静态样本条件下的Lee-Goldburg同核偶极解耦序列及其改进后的触发器Lee-Goldburg (FFLG)和频率开关Lee-Goldburg (FSLG)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信