Raquel López-Ríos de Castro, Alejandro Santana-Bonilla*, Robert M. Ziolek and Christian D. Lorenz*,
{"title":"Automated Analysis of Soft Matter Interfaces, Interactions, and Self-Assembly with PySoftK","authors":"Raquel López-Ríos de Castro, Alejandro Santana-Bonilla*, Robert M. Ziolek and Christian D. Lorenz*, ","doi":"10.1021/acs.jcim.4c0184910.1021/acs.jcim.4c01849","DOIUrl":null,"url":null,"abstract":"<p >Molecular dynamics simulations have become essential tools in the study of soft matter and biological macromolecules. The large amount of high-dimensional data associated with such simulations does not straightforwardly elucidate the atomistic mechanisms that underlie complex materials and molecular processes. Analysis of these simulations is complicated: the dynamics intrinsic to soft matter simulations necessitates careful application of specific, and often complex, algorithms to extract meaningful molecular scale understanding. There is an ongoing need for high-quality automated computational workflows to facilitate this analysis in a reproducible manner with minimal user input. In this work, we introduce a series of molecular simulation analysis tools for investigating interfaces, molecular interactions (including ring–ring stacking), and self-assembly. In addition, we include a number of auxiliary tools, including a useful function to unwrap molecular structures that are greater than half the length of their corresponding simulation box. These tools are contained in the PySoftK software package, making the application of these algorithms straightforward for the user. These new simulation analysis tools within PySoftK will support high-quality, reproducible analysis of soft matter and biomolecular simulations to bring about new predictive understanding in nano- and biotechnology.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 4","pages":"1679–1684 1679–1684"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c01849","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01849","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular dynamics simulations have become essential tools in the study of soft matter and biological macromolecules. The large amount of high-dimensional data associated with such simulations does not straightforwardly elucidate the atomistic mechanisms that underlie complex materials and molecular processes. Analysis of these simulations is complicated: the dynamics intrinsic to soft matter simulations necessitates careful application of specific, and often complex, algorithms to extract meaningful molecular scale understanding. There is an ongoing need for high-quality automated computational workflows to facilitate this analysis in a reproducible manner with minimal user input. In this work, we introduce a series of molecular simulation analysis tools for investigating interfaces, molecular interactions (including ring–ring stacking), and self-assembly. In addition, we include a number of auxiliary tools, including a useful function to unwrap molecular structures that are greater than half the length of their corresponding simulation box. These tools are contained in the PySoftK software package, making the application of these algorithms straightforward for the user. These new simulation analysis tools within PySoftK will support high-quality, reproducible analysis of soft matter and biomolecular simulations to bring about new predictive understanding in nano- and biotechnology.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.