{"title":"Machine and deep learning to predict viral fusion peptides","authors":"A.M. Sequeira , M. Rocha , Diana Lousa","doi":"10.1016/j.csbj.2025.02.011","DOIUrl":null,"url":null,"abstract":"<div><div>Viral fusion proteins, located on the surface of enveloped viruses like SARS-CoV-2, Influenza, and HIV, play a vital role in fusing the virus envelope with the host cell membrane. Fusion peptides, conserved segments within these proteins, are crucial for the fusion process and are potential targets for therapy. Experimental identification of fusion peptides is time-consuming and costly, which creates the need for bioinformatics tools that can predict the segment within the fusion protein sequence that corresponds to the FP. Although homology-based methods have been used towards this end, they fail to identify fusion peptides lacking overall sequence similarity to known counterparts. Therefore, alternative methods are needed to discover new putative fusion peptides, namely those based on machine learning. In this study, we explore various ML-based approaches to identify fusion peptides within a fusion protein sequence. We employ token classification methods and sliding window approaches coupled with machine and deep learning models. We evaluate different protein sequence representations, including one-hot encoding, physicochemical features, as well as representations from Natural Language Processing, such as word embeddings and transformers. Through the examination of over 50 combinations of models and features, we achieve promising results, particularly with models based on a state-of-the-art transformer for amino acid token classification. Furthermore, we utilize the best models to predict hypothetical fusion peptides for SARS-CoV-2, and critically analyse annotated peptides from existing research. Overall, our models effectively predict the location of fusion peptides, even in viruses for which limited experimental data is available.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 692-704"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S200103702500039X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Viral fusion proteins, located on the surface of enveloped viruses like SARS-CoV-2, Influenza, and HIV, play a vital role in fusing the virus envelope with the host cell membrane. Fusion peptides, conserved segments within these proteins, are crucial for the fusion process and are potential targets for therapy. Experimental identification of fusion peptides is time-consuming and costly, which creates the need for bioinformatics tools that can predict the segment within the fusion protein sequence that corresponds to the FP. Although homology-based methods have been used towards this end, they fail to identify fusion peptides lacking overall sequence similarity to known counterparts. Therefore, alternative methods are needed to discover new putative fusion peptides, namely those based on machine learning. In this study, we explore various ML-based approaches to identify fusion peptides within a fusion protein sequence. We employ token classification methods and sliding window approaches coupled with machine and deep learning models. We evaluate different protein sequence representations, including one-hot encoding, physicochemical features, as well as representations from Natural Language Processing, such as word embeddings and transformers. Through the examination of over 50 combinations of models and features, we achieve promising results, particularly with models based on a state-of-the-art transformer for amino acid token classification. Furthermore, we utilize the best models to predict hypothetical fusion peptides for SARS-CoV-2, and critically analyse annotated peptides from existing research. Overall, our models effectively predict the location of fusion peptides, even in viruses for which limited experimental data is available.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology