Smoothed circulant embedding with applications to multilevel Monte Carlo methods for PDEs with random coefficients

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Anastasia Istratuca, Aretha L Teckentrup
{"title":"Smoothed circulant embedding with applications to multilevel Monte Carlo methods for PDEs with random coefficients","authors":"Anastasia Istratuca, Aretha L Teckentrup","doi":"10.1093/imanum/drae102","DOIUrl":null,"url":null,"abstract":"We consider the computational efficiency of Monte Carlo (MC) and Multilevel Monte Carlo (MLMC) methods applied to partial differential equations with random coefficients. These arise, for example, in groundwater flow modelling, where a commonly used model for the unknown parameter is a random field. We use the circulant embedding procedure for sampling from the aforementioned coefficient. To improve the computational complexity of the MLMC estimator in the case of highly oscillatory random fields we devise and implement a smoothing technique integrated into the circulant embedding method. This allows us to choose the coarsest mesh on the first level of MLMC independently of the correlation length of the covariance function of the random field, leading to considerable savings in computational cost. We illustrate this with numerical experiments, where we see a saving of up to factor 5–10 in computational cost for accuracies of practical interest.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"16 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae102","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the computational efficiency of Monte Carlo (MC) and Multilevel Monte Carlo (MLMC) methods applied to partial differential equations with random coefficients. These arise, for example, in groundwater flow modelling, where a commonly used model for the unknown parameter is a random field. We use the circulant embedding procedure for sampling from the aforementioned coefficient. To improve the computational complexity of the MLMC estimator in the case of highly oscillatory random fields we devise and implement a smoothing technique integrated into the circulant embedding method. This allows us to choose the coarsest mesh on the first level of MLMC independently of the correlation length of the covariance function of the random field, leading to considerable savings in computational cost. We illustrate this with numerical experiments, where we see a saving of up to factor 5–10 in computational cost for accuracies of practical interest.
光滑循环嵌入及其在带随机系数偏微分方程的多层蒙特卡罗方法中的应用
研究了蒙特卡罗(MC)和多层蒙特卡罗(MLMC)方法在求解随机系数偏微分方程中的计算效率。例如,在地下水流动建模中,通常使用的未知参数模型是随机场。我们使用循环嵌入程序对上述系数进行采样。为了提高MLMC估计器在高振荡随机场情况下的计算复杂度,我们设计并实现了一种将平滑技术集成到循环嵌入方法中的方法。这使得我们可以独立于随机场协方差函数的相关长度,在MLMC的第一层选择最粗的网格,从而大大节省了计算成本。我们用数值实验来说明这一点,在实验中,我们看到在计算成本上节省了5-10倍,以达到实际的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信