Macro‐ and Microscopic Mechanisms of Soil Arching Evolution Under the Impact of Noncentered Tunnel

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Rui‐Xiao Zhang, Dong Su, Xiang‐Sheng Chen, Xing‐Tao Lin, Hao Xiong, De‐Jin Zhang
{"title":"Macro‐ and Microscopic Mechanisms of Soil Arching Evolution Under the Impact of Noncentered Tunnel","authors":"Rui‐Xiao Zhang, Dong Su, Xiang‐Sheng Chen, Xing‐Tao Lin, Hao Xiong, De‐Jin Zhang","doi":"10.1002/nag.3962","DOIUrl":null,"url":null,"abstract":"Further investigation into the progression of soil arching under the impact of noncentered tunnel is warranted. This study addresses this need by examining trapdoor models with varying vertical and horizontal spacings between the tunnel and the trapdoor through the discrete element method. The numerical model underwent calibration utilizing data from previous experiments. The results indicated that the soil arching ratio under the impact of noncentered tunnel exhibits four distinct stages: initial soil arching, maximum soil arching, load recovery, and ultimate stage, aligning with observations unaffected by tunnel presence. The minimal disparity in stress ratio within the stationary region was observed when the vertical spacing between the tunnel and the trapdoor ranges between 150 and 200 mm. Moreover, the disturbed area on the left part of the trapdoor extended significantly beyond the trapdoor width, with notably higher disturbance height compared to the right side. When the tunnel deviated from the centerline of the trapdoor, the stress enhancement on the right side was considerably greater compared to the left. Additionally, the displacement of the trapdoor resulted in a reduction of contact force anisotropy in the soil on the side more distant from the tunnel, while increasing it on the side closer to the tunnel.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"35 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3962","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Further investigation into the progression of soil arching under the impact of noncentered tunnel is warranted. This study addresses this need by examining trapdoor models with varying vertical and horizontal spacings between the tunnel and the trapdoor through the discrete element method. The numerical model underwent calibration utilizing data from previous experiments. The results indicated that the soil arching ratio under the impact of noncentered tunnel exhibits four distinct stages: initial soil arching, maximum soil arching, load recovery, and ultimate stage, aligning with observations unaffected by tunnel presence. The minimal disparity in stress ratio within the stationary region was observed when the vertical spacing between the tunnel and the trapdoor ranges between 150 and 200 mm. Moreover, the disturbed area on the left part of the trapdoor extended significantly beyond the trapdoor width, with notably higher disturbance height compared to the right side. When the tunnel deviated from the centerline of the trapdoor, the stress enhancement on the right side was considerably greater compared to the left. Additionally, the displacement of the trapdoor resulted in a reduction of contact force anisotropy in the soil on the side more distant from the tunnel, while increasing it on the side closer to the tunnel.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信