A deep learning digital biomarker to detect hypertension and stratify cardiovascular risk from the electrocardiogram

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Mostafa A. Al-Alusi, Samuel F. Friedman, Shinwan Kany, Joel T. Rämö, Daniel Pipilas, Pulkit Singh, Christopher Reeder, Shaan Khurshid, James P. Pirruccello, Mahnaz Maddah, Jennifer E. Ho, Patrick T. Ellinor
{"title":"A deep learning digital biomarker to detect hypertension and stratify cardiovascular risk from the electrocardiogram","authors":"Mostafa A. Al-Alusi, Samuel F. Friedman, Shinwan Kany, Joel T. Rämö, Daniel Pipilas, Pulkit Singh, Christopher Reeder, Shaan Khurshid, James P. Pirruccello, Mahnaz Maddah, Jennifer E. Ho, Patrick T. Ellinor","doi":"10.1038/s41746-025-01491-8","DOIUrl":null,"url":null,"abstract":"<p>Hypertension is a major risk factor for cardiovascular disease (CVD), yet blood pressure is measured intermittently and under suboptimal conditions. We developed a deep learning model to identify hypertension and stratify risk of CVD using 12-lead electrocardiogram waveforms. HTN-AI was trained to detect hypertension using 752,415 electrocardiograms from 103,405 adults at Massachusetts General Hospital. We externally validated HTN-AI and demonstrated associations between HTN-AI risk and incident CVD in 56,760 adults at Brigham and Women’s Hospital. HTN-AI accurately discriminated hypertension (internal and external validation AUROC 0.803 and 0.771, respectively). In Fine-Gray regression analyses model-predicted probability of hypertension was associated with mortality (hazard ratio per standard deviation: 1.47 [1.36-1.60], <i>p</i> &lt; 0.001), HF (2.26 [1.90-2.69], <i>p</i> &lt; 0.001), MI (1.87 [1.69-2.07], <i>p</i> &lt; 0.001), stroke (1.30 [1.18-1.44], <i>p</i> &lt; 0.001), and aortic dissection or rupture (1.69 [1.22-2.35], <i>p</i> &lt; 0.001) after adjustment for demographics and risk factors. HTN-AI may facilitate diagnosis of hypertension and serve as a digital biomarker of hypertension-associated CVD.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"18 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01491-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Hypertension is a major risk factor for cardiovascular disease (CVD), yet blood pressure is measured intermittently and under suboptimal conditions. We developed a deep learning model to identify hypertension and stratify risk of CVD using 12-lead electrocardiogram waveforms. HTN-AI was trained to detect hypertension using 752,415 electrocardiograms from 103,405 adults at Massachusetts General Hospital. We externally validated HTN-AI and demonstrated associations between HTN-AI risk and incident CVD in 56,760 adults at Brigham and Women’s Hospital. HTN-AI accurately discriminated hypertension (internal and external validation AUROC 0.803 and 0.771, respectively). In Fine-Gray regression analyses model-predicted probability of hypertension was associated with mortality (hazard ratio per standard deviation: 1.47 [1.36-1.60], p < 0.001), HF (2.26 [1.90-2.69], p < 0.001), MI (1.87 [1.69-2.07], p < 0.001), stroke (1.30 [1.18-1.44], p < 0.001), and aortic dissection or rupture (1.69 [1.22-2.35], p < 0.001) after adjustment for demographics and risk factors. HTN-AI may facilitate diagnosis of hypertension and serve as a digital biomarker of hypertension-associated CVD.

Abstract Image

高血压是心血管疾病(CVD)的主要风险因素,但血压的测量是间歇性的,而且是在不理想的条件下进行的。我们开发了一种深度学习模型,利用 12 导联心电图波形识别高血压并对心血管疾病风险进行分层。我们利用麻省总医院 103,405 名成人的 752,415 张心电图对 HTN-AI 进行了训练,以检测高血压。我们对 HTN-AI 进行了外部验证,并在布里格姆妇女医院的 56,760 名成人中证明了 HTN-AI 风险与心血管疾病事件之间的关联。HTN-AI 能准确区分高血压(内部和外部验证的 AUROC 分别为 0.803 和 0.771)。在 Fine-Gray 回归分析中,模型预测的高血压概率与死亡率(每个标准差的危险比:1.47 [1.36-1.60],p < 0.001)、高血压(2.26 [1.90-2.69],p < 0.001)、心肌梗死(1.87 [1.69-2.07],p <0.001)、中风(1.30 [1.18-1.44],p <0.001)以及主动脉夹层或破裂(1.69 [1.22-2.35],p <0.001)。HTN-AI可能有助于高血压的诊断,并可作为高血压相关心血管疾病的数字生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信