{"title":"Artificial intelligence assessment of tissue-dissection efficiency in laparoscopic colorectal surgery.","authors":"Kei Nakajima, Shin Takenaka, Daichi Kitaguchi, Atsuki Tanaka, Kyoko Ryu, Nobuyoshi Takeshita, Yusuke Kinugasa, Masaaki Ito","doi":"10.1007/s00423-025-03641-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Several surgical-skill assessment tools emphasize the importance of efficient tissue-dissection, whose assessment relies on human judgment and is thus subject to bias. Automated assessment may help solve this problem. This study aimed to verify the feasibility of surgical-skill assessment using a deep learning-based recognition model.</p><p><strong>Methods: </strong>This retrospective study used multicenter intraoperative videos of laparoscopic colorectal surgery (sigmoidectomy or high anterior resection) for colorectal cancer obtained from 766 cases across Japan. Three groups with different skill levels were distinguished: high-, intermediate-, and low-skill. We developed a model to recognize tissue dissection by the monopolar device using deep learning-based computer-vision technology. Tissue-dissection time per monopolar device appearance time (efficient-dissection time ratio) was extracted as a quantitative parameter describing efficient dissection. We automatically measured the efficient-dissection time ratio using the recognition model of 8 surgical instruments and tissue-dissection on/off classification model. The efficient-dissection time ratio was compared among groups; the feasibility of distinguishing them was explored using the model. The model-calculated parameters were evaluated to determine whether they could differentiate high-, intermediate-, and low-skill groups.</p><p><strong>Results: </strong>The tissue-dissection recognition model had an overall accuracy of 0.91. There was a moderate correlation (0.542; 95% confidence interval, 0.288-0.724; P < 0.001) between manually and automatically measured efficient-dissection time ratios. Efficient-dissection time ratios by this model were significantly higher in the high-skill than in intermediate-skill (P = 0.0081) and low-skill (P = 0.0249) groups.</p><p><strong>Conclusion: </strong>An automated efficient-dissection assessment model using a monopolar device was constructed with a feasible automated skill-assessment method.</p>","PeriodicalId":17983,"journal":{"name":"Langenbeck's Archives of Surgery","volume":"410 1","pages":"80"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845557/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langenbeck's Archives of Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00423-025-03641-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Several surgical-skill assessment tools emphasize the importance of efficient tissue-dissection, whose assessment relies on human judgment and is thus subject to bias. Automated assessment may help solve this problem. This study aimed to verify the feasibility of surgical-skill assessment using a deep learning-based recognition model.
Methods: This retrospective study used multicenter intraoperative videos of laparoscopic colorectal surgery (sigmoidectomy or high anterior resection) for colorectal cancer obtained from 766 cases across Japan. Three groups with different skill levels were distinguished: high-, intermediate-, and low-skill. We developed a model to recognize tissue dissection by the monopolar device using deep learning-based computer-vision technology. Tissue-dissection time per monopolar device appearance time (efficient-dissection time ratio) was extracted as a quantitative parameter describing efficient dissection. We automatically measured the efficient-dissection time ratio using the recognition model of 8 surgical instruments and tissue-dissection on/off classification model. The efficient-dissection time ratio was compared among groups; the feasibility of distinguishing them was explored using the model. The model-calculated parameters were evaluated to determine whether they could differentiate high-, intermediate-, and low-skill groups.
Results: The tissue-dissection recognition model had an overall accuracy of 0.91. There was a moderate correlation (0.542; 95% confidence interval, 0.288-0.724; P < 0.001) between manually and automatically measured efficient-dissection time ratios. Efficient-dissection time ratios by this model were significantly higher in the high-skill than in intermediate-skill (P = 0.0081) and low-skill (P = 0.0249) groups.
Conclusion: An automated efficient-dissection assessment model using a monopolar device was constructed with a feasible automated skill-assessment method.
期刊介绍:
Langenbeck''s Archives of Surgery aims to publish the best results in the field of clinical surgery and basic surgical research. The main focus is on providing the highest level of clinical research and clinically relevant basic research. The journal, published exclusively in English, will provide an international discussion forum for the controlled results of clinical surgery. The majority of published contributions will be original articles reporting on clinical data from general and visceral surgery, while endocrine surgery will also be covered. Papers on basic surgical principles from the fields of traumatology, vascular and thoracic surgery are also welcome. Evidence-based medicine is an important criterion for the acceptance of papers.