Nonlinear light control in optical couplers: Harnessing PPTT-symmetry for enhanced beam propagation.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-02-01 DOI:10.1063/5.0245649
C P Jaseera, K Aysha Muhsina, A R Thasneem
{"title":"Nonlinear light control in optical couplers: Harnessing PPTT-symmetry for enhanced beam propagation.","authors":"C P Jaseera, K Aysha Muhsina, A R Thasneem","doi":"10.1063/5.0245649","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the evolution of nonlinear eigenmodes in coupled optical systems supported by PT-symmetric Rosen-Morse complex potential, in which one channel is with gain and the other is with loss. We assessed that the threshold potential above which PT-symmetry breakdown occurs is enhanced by coupling constant, by examining low- and high-frequency eigenmodes of ground and first excited states. The stability of eigenmodes was verified by stability analysis using Bogoliubov-de-Gennes (BdG) equations and it was established that even though the Rosen-Morse potential-supported system can create eigenmodes, it cannot support stable soliton solutions for any potential values. The investigation was extended using the modified Rosen-Morse potential that is nearly PT-symmetric and deduced the conditions for better-defined thresholds, improved damping of growth of perturbation which destabilizes eigenmodes, and advanced control mechanisms to manage perturbations and potential interactions. Propagation dynamics of the eigenmodes and power switching between channels have been studied and the controlling mechanism has been discussed to use coupled systems as optical regulators to precisely direct light between multiple paths. We have explored the significance of couplers in signal-processing applications because they control the intensity of various frequency modes. Optical couplers can be used to develop devices that let light travel in one direction while restricting it in the other which find applications in optical sensing.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0245649","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study explored the evolution of nonlinear eigenmodes in coupled optical systems supported by PT-symmetric Rosen-Morse complex potential, in which one channel is with gain and the other is with loss. We assessed that the threshold potential above which PT-symmetry breakdown occurs is enhanced by coupling constant, by examining low- and high-frequency eigenmodes of ground and first excited states. The stability of eigenmodes was verified by stability analysis using Bogoliubov-de-Gennes (BdG) equations and it was established that even though the Rosen-Morse potential-supported system can create eigenmodes, it cannot support stable soliton solutions for any potential values. The investigation was extended using the modified Rosen-Morse potential that is nearly PT-symmetric and deduced the conditions for better-defined thresholds, improved damping of growth of perturbation which destabilizes eigenmodes, and advanced control mechanisms to manage perturbations and potential interactions. Propagation dynamics of the eigenmodes and power switching between channels have been studied and the controlling mechanism has been discussed to use coupled systems as optical regulators to precisely direct light between multiple paths. We have explored the significance of couplers in signal-processing applications because they control the intensity of various frequency modes. Optical couplers can be used to develop devices that let light travel in one direction while restricting it in the other which find applications in optical sensing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信