Chen-Tai Hong, You-En Yang, Hsueh-Fen Juan, Chih-Peng Chang, Yi-Ching Wang
{"title":"GDP-bound Rab37 modulates M2-like tumor-associated macrophage polarization by attenuating STAT1 translocation to downregulate the type I IFN pathway.","authors":"Chen-Tai Hong, You-En Yang, Hsueh-Fen Juan, Chih-Peng Chang, Yi-Ching Wang","doi":"10.1038/s41416-025-02955-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) primarily polarize into the M2-phenotype. Our previous study showed that the small GTPase Rab37 mediates IL-6 trafficking in macrophages for M2 polarization. Here, we uncover an unconventional role of Rab37, independent of vesicle trafficking, in promoting M2 polarization of TAMs.</p><p><strong>Methods: </strong>The gene profiles in wild-type and Rab37 knockout (KO) bone marrow-derived macrophages (BMDMs) were analyzed using cDNA microarray. The mechanism of Rab37 in regulating the interferon (IFN) pathway was confirmed through in vitro/vivo assays and clinical studies.</p><p><strong>Results: </strong>Type I IFN signaling was highly enriched in BMDMs from Rab37 KO mice. Moreover, Rab37 induction and decreased type I IFN genes were observed in macrophages treated with lung cancer-conditioned medium and epigenetic drugs, indicating an epigenetic regulation of Rab37 in TAMs. Mechanistically, GDP-bound Rab37 interacted with the nuclear localization sequence of STAT1 to sequest it in the cytosol from its transcription activities, thus leading to the downregulation of IFN genes. Clinically, CD163<sup>+</sup>/Rab37<sup>+</sup>/STAT1<sup>cytosol</sup> in TAMs expression signature correlated with advanced tumor stages and poor survival of lung cancer patients.</p><p><strong>Conclusions: </strong>Our findings highlight the cytosolic interaction of Rab37-STAT1 in M2 TAM polarization, with CD163<sup>+</sup>/Rab37<sup>+</sup>/STAT1<sup>cytosol</sup> TAMs as a lung cancer prognosis biomarker.</p>","PeriodicalId":9243,"journal":{"name":"British Journal of Cancer","volume":" ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41416-025-02955-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) primarily polarize into the M2-phenotype. Our previous study showed that the small GTPase Rab37 mediates IL-6 trafficking in macrophages for M2 polarization. Here, we uncover an unconventional role of Rab37, independent of vesicle trafficking, in promoting M2 polarization of TAMs.
Methods: The gene profiles in wild-type and Rab37 knockout (KO) bone marrow-derived macrophages (BMDMs) were analyzed using cDNA microarray. The mechanism of Rab37 in regulating the interferon (IFN) pathway was confirmed through in vitro/vivo assays and clinical studies.
Results: Type I IFN signaling was highly enriched in BMDMs from Rab37 KO mice. Moreover, Rab37 induction and decreased type I IFN genes were observed in macrophages treated with lung cancer-conditioned medium and epigenetic drugs, indicating an epigenetic regulation of Rab37 in TAMs. Mechanistically, GDP-bound Rab37 interacted with the nuclear localization sequence of STAT1 to sequest it in the cytosol from its transcription activities, thus leading to the downregulation of IFN genes. Clinically, CD163+/Rab37+/STAT1cytosol in TAMs expression signature correlated with advanced tumor stages and poor survival of lung cancer patients.
Conclusions: Our findings highlight the cytosolic interaction of Rab37-STAT1 in M2 TAM polarization, with CD163+/Rab37+/STAT1cytosol TAMs as a lung cancer prognosis biomarker.
期刊介绍:
The British Journal of Cancer is one of the most-cited general cancer journals, publishing significant advances in translational and clinical cancer research.It also publishes high-quality reviews and thought-provoking comment on all aspects of cancer prevention,diagnosis and treatment.