{"title":"RSAD2: A pathogenic interferon-stimulated gene at the maternal-fetal interface of patients with systemic lupus erythematosus.","authors":"Xiaoyu Ding, Yonggang Zhou, Xiaofeng Qiu, Xiuxiu Xu, Xinyu Hu, Jingkun Qin, Yulan Chen, Min Zhang, Jieqi Ke, Zhenbang Liu, Ying Zhou, Chen Ding, Nan Shen, Zhigang Tian, Binqing Fu, Haiming Wei","doi":"10.1016/j.xcrm.2025.101974","DOIUrl":null,"url":null,"abstract":"<p><p>Pregnancy disorders in patients with autoimmune diseases or viral infections are often associated with an excessive response of type I interferons. We identify radical S-adenosyl methionine domain containing 2 (RSAD2) as a pathogenic interferon-stimulated gene (ISG) associated with pregnancy complications in systemic lupus erythematosus (SLE). The increased expression of RSAD2 mainly occurs in macrophages and structural cell populations at the maternal-fetal interface of pregnant patients with SLE. The elevation of RSAD2 leads to the accumulation of diacylglycerol lipids in the placenta, impairing the necessary vascular development for the fetus. Depletion of Rsad2 in pregnant mice models exposed to type I interferon inducers significantly reduces lipid accumulation, vascular injury, and embryo development disorders. An RSAD2 inhibitor, L-chicoric acid (LCA), alleviates lipid accumulation and vascular damage, improving pregnancy outcomes in SLE-induced and spontaneous mouse models. This study proposes the potential of targeting RSAD2 to improve pregnancy outcomes in individuals with heightened type I interferon response.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101974"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.101974","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pregnancy disorders in patients with autoimmune diseases or viral infections are often associated with an excessive response of type I interferons. We identify radical S-adenosyl methionine domain containing 2 (RSAD2) as a pathogenic interferon-stimulated gene (ISG) associated with pregnancy complications in systemic lupus erythematosus (SLE). The increased expression of RSAD2 mainly occurs in macrophages and structural cell populations at the maternal-fetal interface of pregnant patients with SLE. The elevation of RSAD2 leads to the accumulation of diacylglycerol lipids in the placenta, impairing the necessary vascular development for the fetus. Depletion of Rsad2 in pregnant mice models exposed to type I interferon inducers significantly reduces lipid accumulation, vascular injury, and embryo development disorders. An RSAD2 inhibitor, L-chicoric acid (LCA), alleviates lipid accumulation and vascular damage, improving pregnancy outcomes in SLE-induced and spontaneous mouse models. This study proposes the potential of targeting RSAD2 to improve pregnancy outcomes in individuals with heightened type I interferon response.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.