Ting Liu, Lu Li, Meixia Meng, Ming Gao, Jinhua Zhang, Yuan Zhang, Yukun Gan, Yangjie Dang, Limin Liu
{"title":"The Protective Role of the IRE1α/XBP1 Signaling Cascade in Autophagy During Ischemic Stress and Acute Kidney Injury.","authors":"Ting Liu, Lu Li, Meixia Meng, Ming Gao, Jinhua Zhang, Yuan Zhang, Yukun Gan, Yangjie Dang, Limin Liu","doi":"10.1016/j.cstres.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a common and serious complication resulting from ischemia and hypoxia, leading to significant morbidity and mortality. Autophagy, a cellular process for degrading damaged components, plays a crucial role in kidney protection. The unfolded protein response (UPR) pathway, particularly the IRE1α/XBP1 signaling cascade, is implicated in regulating autophagy during renal stress. To elucidate the role of the IRE1α/XBP1 pathway in autophagy during hypoxia/reoxygenation (H/R) and ischemia/reperfusion (I/R) injury, renal tubular epithelial cells (TECs) were subjected to H/R conditions, and I/R injury was induced in mice. The expression of autophagy-related and ER stress markers (IRE1α, XBP1, GRP78, Beclin1, LC3I/II, and P62) was assessed using immunoblotting and immunofluorescence. Additionally, the impacts of IRE1α overexpression and pharmacological agents, IXA6 (IRE1α agonist) and STF083010 (IRE1α inhibitor), were evaluated on autophagy regulation. H/R injury significantly increased mitochondrial damage and the formation of autophagic vesicles in TECs. Key markers of autophagy were elevated in response to H/R and I/R injury, with activation of the IRE1α/XBP1 pathway enhancing autophagic processes. IXA6 treatment improved renal function and reduced injury in I/R models, while STF083010 exacerbated kidney damage. The IRE1α/XBP1 pathway is a critical regulator of autophagy in renal TECs during ischemic stress, suggesting that pharmacological modulation of this pathway may offer therapeutic avenues for preventing or mitigating AKI. Enhanced understanding of these mechanisms may lead to novel strategies for kidney disease management.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cstres.2025.02.004","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute kidney injury (AKI) is a common and serious complication resulting from ischemia and hypoxia, leading to significant morbidity and mortality. Autophagy, a cellular process for degrading damaged components, plays a crucial role in kidney protection. The unfolded protein response (UPR) pathway, particularly the IRE1α/XBP1 signaling cascade, is implicated in regulating autophagy during renal stress. To elucidate the role of the IRE1α/XBP1 pathway in autophagy during hypoxia/reoxygenation (H/R) and ischemia/reperfusion (I/R) injury, renal tubular epithelial cells (TECs) were subjected to H/R conditions, and I/R injury was induced in mice. The expression of autophagy-related and ER stress markers (IRE1α, XBP1, GRP78, Beclin1, LC3I/II, and P62) was assessed using immunoblotting and immunofluorescence. Additionally, the impacts of IRE1α overexpression and pharmacological agents, IXA6 (IRE1α agonist) and STF083010 (IRE1α inhibitor), were evaluated on autophagy regulation. H/R injury significantly increased mitochondrial damage and the formation of autophagic vesicles in TECs. Key markers of autophagy were elevated in response to H/R and I/R injury, with activation of the IRE1α/XBP1 pathway enhancing autophagic processes. IXA6 treatment improved renal function and reduced injury in I/R models, while STF083010 exacerbated kidney damage. The IRE1α/XBP1 pathway is a critical regulator of autophagy in renal TECs during ischemic stress, suggesting that pharmacological modulation of this pathway may offer therapeutic avenues for preventing or mitigating AKI. Enhanced understanding of these mechanisms may lead to novel strategies for kidney disease management.
期刊介绍:
Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.