Assessing lung cancer progression and survival with infrared spectroscopy of blood serum.

IF 7 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Kosmas V Kepesidis, Mircea-Gabriel Stoleriu, Nico Feiler, Lea Gigou, Frank Fleischmann, Jacqueline Aschauer, Sabine Eiselen, Ina Koch, Niels Reinmuth, Amanda Tufman, Jürgen Behr, Mihaela Žigman
{"title":"Assessing lung cancer progression and survival with infrared spectroscopy of blood serum.","authors":"Kosmas V Kepesidis, Mircea-Gabriel Stoleriu, Nico Feiler, Lea Gigou, Frank Fleischmann, Jacqueline Aschauer, Sabine Eiselen, Ina Koch, Niels Reinmuth, Amanda Tufman, Jürgen Behr, Mihaela Žigman","doi":"10.1186/s12916-025-03924-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Infrared molecular fingerprinting has been identified as a new minimally invasive technological tool for disease diagnosis. While the utility of cross-molecular infrared fingerprints of serum and plasma for in vitro cancer diagnostics has been recently demonstrated, their potential for stratifying and predicting the prognosis of lung cancer remained unexplored. This study investigates the capability of this approach to predict survival and stratify lung cancer patients.</p><p><strong>Methods: </strong>Molecular fingerprinting through vibrational spectroscopy is employed to probe lung cancer. Fourier-transform infrared (FTIR) spectroscopy is applied to blood sera from 160 therapy-naive lung cancer patients, who were followed for up to 4 years. Machine learning is then utilized to evaluate the prognostic utility of this new approach. Additionally, a case-control study involving 501 individuals is analyzed to investigate the relationship between FTIR spectra and disease progression.</p><p><strong>Results: </strong>Overall, we establish a strong correlation between the infrared fingerprints and disease progression, specifically in terms of tumor stage. Furthermore, we demonstrate that infrared fingerprinting provides insights into patient survival at performance levels comparable to those of tumor stage and relevant blood-based biomarkers.</p><p><strong>Conclusions: </strong>Identifying the combined capacity of infrared fingerprinting to complement primary lung cancer diagnostics and to assist in the assessment of lung cancer survival represents the first proof-of-concept study underscoring the potential of this profiling platform. This may provide new avenues for the development of tailored, personalized treatment decision-making.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"101"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846347/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-03924-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Infrared molecular fingerprinting has been identified as a new minimally invasive technological tool for disease diagnosis. While the utility of cross-molecular infrared fingerprints of serum and plasma for in vitro cancer diagnostics has been recently demonstrated, their potential for stratifying and predicting the prognosis of lung cancer remained unexplored. This study investigates the capability of this approach to predict survival and stratify lung cancer patients.

Methods: Molecular fingerprinting through vibrational spectroscopy is employed to probe lung cancer. Fourier-transform infrared (FTIR) spectroscopy is applied to blood sera from 160 therapy-naive lung cancer patients, who were followed for up to 4 years. Machine learning is then utilized to evaluate the prognostic utility of this new approach. Additionally, a case-control study involving 501 individuals is analyzed to investigate the relationship between FTIR spectra and disease progression.

Results: Overall, we establish a strong correlation between the infrared fingerprints and disease progression, specifically in terms of tumor stage. Furthermore, we demonstrate that infrared fingerprinting provides insights into patient survival at performance levels comparable to those of tumor stage and relevant blood-based biomarkers.

Conclusions: Identifying the combined capacity of infrared fingerprinting to complement primary lung cancer diagnostics and to assist in the assessment of lung cancer survival represents the first proof-of-concept study underscoring the potential of this profiling platform. This may provide new avenues for the development of tailored, personalized treatment decision-making.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medicine
BMC Medicine 医学-医学:内科
CiteScore
13.10
自引率
1.10%
发文量
435
审稿时长
4-8 weeks
期刊介绍: BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信