GABA transporter 1 is a promising drug target for CUL4B mutation-associated epilepsy.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Jiang, Yan-Yan Ma, Yu-Feng Wang, Shi-Qi Jin, Rui-Qi Yu, Shu-Xian Chu, Yang-Fan Gao, Mo-Lin Wang, Yong-Xin Zou, Qiao Liu, Yu Song, Yan Zheng, Chen Zhang, Gong-Ping Sun, Bai-Chun Jiang, Yao-Qin Gong
{"title":"GABA transporter 1 is a promising drug target for CUL4B mutation-associated epilepsy.","authors":"Wei Jiang, Yan-Yan Ma, Yu-Feng Wang, Shi-Qi Jin, Rui-Qi Yu, Shu-Xian Chu, Yang-Fan Gao, Mo-Lin Wang, Yong-Xin Zou, Qiao Liu, Yu Song, Yan Zheng, Chen Zhang, Gong-Ping Sun, Bai-Chun Jiang, Yao-Qin Gong","doi":"10.1038/s41401-025-01490-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cullin 4B (CUL4B) is the scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Loss-of-function mutations in the human CUL4B gene result in syndromic X-linked intellectual disability (XLID). In addition to intellectual disability, patients with CUL4B mutations exhibit epilepsy. To date, the mechanism underlying epilepsy associated with CUL4B mutation has not been elucidated. Here, we show that male mice with Cul4b deleted in the nervous system are more susceptible to both pentylenetetrazole (PTZ)- and kainic acid (KA)-induced epilepsy and exhibit spontaneous epilepsy without any chemical inducers. We identify the CRL4B complex as an E3 ubiquitin ligase that targets GABA transporter 1 (GAT1). CUL4B deletion in male mice results in GAT1 accumulation and increased GABA reuptake, leading to impaired GABA-mediated inhibitory synaptic transmission. Treating CUL4B-deficient mice with the GAT1 inhibitor tiagabine effectively reverses the increased susceptibility to chemical-induced epilepsy and attenuates spontaneous epilepsy without the use of chemical inducers. We further confirm the role of CUL4B in the regulation of GAT1 levels and GABA uptake in neurons and astrocytes differentiated from induced pluripotent stem cells (iPSCs) derived from patients with CUL4B loss-of-function mutations. Our work reveals a novel mechanism underlying the pathogenesis of epilepsy and identifies a promising drug target for treating CUL4B mutation-associated epilepsy.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01490-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cullin 4B (CUL4B) is the scaffold protein in the CUL4B-RING E3 ubiquitin ligase (CRL4B) complex. Loss-of-function mutations in the human CUL4B gene result in syndromic X-linked intellectual disability (XLID). In addition to intellectual disability, patients with CUL4B mutations exhibit epilepsy. To date, the mechanism underlying epilepsy associated with CUL4B mutation has not been elucidated. Here, we show that male mice with Cul4b deleted in the nervous system are more susceptible to both pentylenetetrazole (PTZ)- and kainic acid (KA)-induced epilepsy and exhibit spontaneous epilepsy without any chemical inducers. We identify the CRL4B complex as an E3 ubiquitin ligase that targets GABA transporter 1 (GAT1). CUL4B deletion in male mice results in GAT1 accumulation and increased GABA reuptake, leading to impaired GABA-mediated inhibitory synaptic transmission. Treating CUL4B-deficient mice with the GAT1 inhibitor tiagabine effectively reverses the increased susceptibility to chemical-induced epilepsy and attenuates spontaneous epilepsy without the use of chemical inducers. We further confirm the role of CUL4B in the regulation of GAT1 levels and GABA uptake in neurons and astrocytes differentiated from induced pluripotent stem cells (iPSCs) derived from patients with CUL4B loss-of-function mutations. Our work reveals a novel mechanism underlying the pathogenesis of epilepsy and identifies a promising drug target for treating CUL4B mutation-associated epilepsy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信