Large Language Models as Tools for Molecular Toxicity Prediction: AI Insights into Cardiotoxicity.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Hengzheng Yang, Jian Xiu, Weiqi Yan, Kaifeng Liu, Huizi Cui, Zhibang Wang, Qizheng He, Yilin Gao, Weiwei Han
{"title":"Large Language Models as Tools for Molecular Toxicity Prediction: AI Insights into Cardiotoxicity.","authors":"Hengzheng Yang, Jian Xiu, Weiqi Yan, Kaifeng Liu, Huizi Cui, Zhibang Wang, Qizheng He, Yilin Gao, Weiwei Han","doi":"10.1021/acs.jcim.4c01371","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of drug toxicity assessment lies in ensuring the safety and efficacy of the pharmaceutical compounds. Predicting toxicity is crucial in drug development and risk assessment. This study compares the performance of GPT-4 and GPT-4o with traditional deep-learning and machine-learning models, WeaveGNN, MorganFP-MLP, SVC, and KNN, in predicting molecular toxicity, focusing on bone, neuro, and reproductive toxicity. The results indicate that GPT-4 is comparable to deep-learning and machine-learning models in certain areas. We utilized GPT-4 combined with molecular docking techniques to study the cardiotoxicity of three specific targets, examining traditional Chinese medicinal materials listed as both food and medicine. This approach aimed to explore the potential cardiotoxicity and mechanisms of action. The study found that components in Black Sesame, Ginger, Perilla, Sichuan Pagoda Tree Fruit, Galangal, Turmeric, Licorice, Chinese Yam, Amla, and Nutmeg exhibit toxic effects on cardiac target Cav1.2. The docking results indicated significant binding affinities, supporting the hypothesis of potential cardiotoxic effects.This research highlights the potential of ChatGPT in predicting molecular properties and its significance in medicinal chemistry, demonstrating its facilitation of a new research paradigm: with a data set, high-accuracy learning models can be generated without requiring computational knowledge or coding skills, making it accessible and easy to use.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01371","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of drug toxicity assessment lies in ensuring the safety and efficacy of the pharmaceutical compounds. Predicting toxicity is crucial in drug development and risk assessment. This study compares the performance of GPT-4 and GPT-4o with traditional deep-learning and machine-learning models, WeaveGNN, MorganFP-MLP, SVC, and KNN, in predicting molecular toxicity, focusing on bone, neuro, and reproductive toxicity. The results indicate that GPT-4 is comparable to deep-learning and machine-learning models in certain areas. We utilized GPT-4 combined with molecular docking techniques to study the cardiotoxicity of three specific targets, examining traditional Chinese medicinal materials listed as both food and medicine. This approach aimed to explore the potential cardiotoxicity and mechanisms of action. The study found that components in Black Sesame, Ginger, Perilla, Sichuan Pagoda Tree Fruit, Galangal, Turmeric, Licorice, Chinese Yam, Amla, and Nutmeg exhibit toxic effects on cardiac target Cav1.2. The docking results indicated significant binding affinities, supporting the hypothesis of potential cardiotoxic effects.This research highlights the potential of ChatGPT in predicting molecular properties and its significance in medicinal chemistry, demonstrating its facilitation of a new research paradigm: with a data set, high-accuracy learning models can be generated without requiring computational knowledge or coding skills, making it accessible and easy to use.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信