{"title":"Perfluorobutanesulfonate Induces Hypothalamic-Pituitary-Gonadal Axis Disruption and Gonadal Dysplasia of <i>Lithobates catesbeianus</i> Tadpoles.","authors":"Yilin Shu, Liyuan Zhang, Jun He, Lizhu Tang, Yuting Wu, Pei Hong, Hailong Wu, Lianguo Chen","doi":"10.1021/acs.chemrestox.4c00498","DOIUrl":null,"url":null,"abstract":"<p><p>It is uncertain whether exposure to environmental concentrations of perfluorobutanesulfonate (PFBS) disrupts the reproductive endocrine system in amphibian tadpoles. In this study, tadpoles (<i>Lithobates catesbeianus</i>) in G26 stage were treated with different levels of PFBS (0, 1, 3, and 10 μg/L) for 60 days to investigate whether and how PFBS affects the reproductive endocrine system and gonadal development in tadpoles. Tadpole testes exhibited structural damage to germ cells and significantly fewer spermatogonia following PFBS exposure, but the sex ratio remained unaffected. Further, PFBS exposure downregulated transcripts of genes associated with ovarian (<i>figla</i> and <i>nobox</i>) and testicular (<i>sox9</i> and <i>dmrt1</i>) development in tadpoles. Encoding gonadotropin hormone genes were transcriptionally upregulated in the pituitary, and serum gonadotropins (FSH and LH) were elevated. Genes related to testosterone synthesis were transcriptionally upregulated, and serum testosterone concentrations were raised. The transcription of the <i>cyp19a1</i> gene, which is involved in the synthesis of estradiol (E2), was downregulated, leading to decreased levels of serum E2. Furthermore, the transcript level of the vitellogenin gene was downregulated in the liver. Thus, PFBS exposure appears to disrupt the hypothalamic-pituitary-gonadal-liver axis in tadpoles, subsequently impacting gonadal development. The findings of this study indicate that environmental concentrations of PFBS threaten the reproductive endocrine system in amphibians for the first time. This provides important insights for further investigation into the risk that PFBS poses to the stability of the amphibian population.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00498","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
It is uncertain whether exposure to environmental concentrations of perfluorobutanesulfonate (PFBS) disrupts the reproductive endocrine system in amphibian tadpoles. In this study, tadpoles (Lithobates catesbeianus) in G26 stage were treated with different levels of PFBS (0, 1, 3, and 10 μg/L) for 60 days to investigate whether and how PFBS affects the reproductive endocrine system and gonadal development in tadpoles. Tadpole testes exhibited structural damage to germ cells and significantly fewer spermatogonia following PFBS exposure, but the sex ratio remained unaffected. Further, PFBS exposure downregulated transcripts of genes associated with ovarian (figla and nobox) and testicular (sox9 and dmrt1) development in tadpoles. Encoding gonadotropin hormone genes were transcriptionally upregulated in the pituitary, and serum gonadotropins (FSH and LH) were elevated. Genes related to testosterone synthesis were transcriptionally upregulated, and serum testosterone concentrations were raised. The transcription of the cyp19a1 gene, which is involved in the synthesis of estradiol (E2), was downregulated, leading to decreased levels of serum E2. Furthermore, the transcript level of the vitellogenin gene was downregulated in the liver. Thus, PFBS exposure appears to disrupt the hypothalamic-pituitary-gonadal-liver axis in tadpoles, subsequently impacting gonadal development. The findings of this study indicate that environmental concentrations of PFBS threaten the reproductive endocrine system in amphibians for the first time. This provides important insights for further investigation into the risk that PFBS poses to the stability of the amphibian population.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.