Multiple Copper Ions Bind to and Promote the Oligomerization of Huntingtin Protein with Nonpathological Repeat Expansions.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemistry Biochemistry Pub Date : 2025-03-04 Epub Date: 2025-02-21 DOI:10.1021/acs.biochem.5c00012
Deepa Neupane, Miguel Santos-Fernandez, Francisco Fernandez-Lima, Katlyn K Meier
{"title":"Multiple Copper Ions Bind to and Promote the Oligomerization of Huntingtin Protein with Nonpathological Repeat Expansions.","authors":"Deepa Neupane, Miguel Santos-Fernandez, Francisco Fernandez-Lima, Katlyn K Meier","doi":"10.1021/acs.biochem.5c00012","DOIUrl":null,"url":null,"abstract":"<p><p>Huntington's disease (HD) is a fatal neurodegenerative disease characterized by the expression of huntingtin protein (htt) that has a polyglutamine (CAG; polyQ) repeat domain consisting of 36 or more glutamines (mhtt). Historically, mhtt is more broadly associated with HD severity, as are elevated metal levels observed in HD patients. The depletion of wild-type (WT) htt (fewer than 36Qs) is also recognized as a contributing factor to HD progression; however, many questions remain about the interactions of biorelevant metals with WT htt and the impact of the interactions on protein aggregation. In the present work, we utilize a combination of biochemical assays and spectroscopic techniques to provide insights into the interaction of copper with an <i>in vitro</i> htt model (N171-17Q). Herein, we use sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and dynamic light scattering to show that the addition of equimolar or higher concentrations of Cu(II) to htt induces time- and temperature-dependent protein oligomerization/aggregation. Additionally, chelation assays, trapped ion mobility spectrometry, and mass spectrometry confirm the (i) rapid reduction of Cu(II) in the presence of N171-17Q htt, (ii) direct binding of multiple copper ions per protein, and (iii) complex Cu:htt speciation profile with a preference for three distinct Cu:htt states. These findings contribute to our molecular level understanding of copper's role in the depletion and oligomerization/aggregation of WT htt while underscoring the physiological significance of our work, its potential relevance to metal binding in mhtt, and its significance for identifying new avenues for biomarker exploration and therapeutic design strategies.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":"1121-1135"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Huntington's disease (HD) is a fatal neurodegenerative disease characterized by the expression of huntingtin protein (htt) that has a polyglutamine (CAG; polyQ) repeat domain consisting of 36 or more glutamines (mhtt). Historically, mhtt is more broadly associated with HD severity, as are elevated metal levels observed in HD patients. The depletion of wild-type (WT) htt (fewer than 36Qs) is also recognized as a contributing factor to HD progression; however, many questions remain about the interactions of biorelevant metals with WT htt and the impact of the interactions on protein aggregation. In the present work, we utilize a combination of biochemical assays and spectroscopic techniques to provide insights into the interaction of copper with an in vitro htt model (N171-17Q). Herein, we use sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and dynamic light scattering to show that the addition of equimolar or higher concentrations of Cu(II) to htt induces time- and temperature-dependent protein oligomerization/aggregation. Additionally, chelation assays, trapped ion mobility spectrometry, and mass spectrometry confirm the (i) rapid reduction of Cu(II) in the presence of N171-17Q htt, (ii) direct binding of multiple copper ions per protein, and (iii) complex Cu:htt speciation profile with a preference for three distinct Cu:htt states. These findings contribute to our molecular level understanding of copper's role in the depletion and oligomerization/aggregation of WT htt while underscoring the physiological significance of our work, its potential relevance to metal binding in mhtt, and its significance for identifying new avenues for biomarker exploration and therapeutic design strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信