{"title":"Bacterial Swimming and Accumulation on Endothelial Cell Surfaces.","authors":"Xin-Xin Xu, Yangguang Tian, Yuhe Pu, Bingchen Che, Hao Luo, Yanan Liu, Yan-Jun Liu, Guangyin Jing","doi":"10.1021/acs.jpcb.4c08666","DOIUrl":null,"url":null,"abstract":"<p><p>Flagellar-driven locomotion plays a critical role in the bacterial attachment and colonization of surfaces, contributing to the risks of contamination and infection. Extensive efforts to uncover the underlying principles governing bacterial motility near surfaces have relied on idealized assumptions about surrounding artificial surfaces. However, in the context of living systems, the role of cells from tissues and organs becomes increasingly critical, particularly in bacterial swimming and adhesion, yet it remains poorly understood. Here, we propose using biological surfaces composed of vascular endothelial cells to experimentally investigate bacterial motion and interaction behaviors. Our results reveal that bacterial trapping observed on inorganic surfaces is counteractively manifested with reduced radii of circular motion on cellular surfaces. Additionally, two distinct modes of bacterial adhesion were identified: tight and loose adhesion. Interestingly, the presence of living cells enhances bacterial surface enrichment, and imposed flow intensifies this accumulation via a bias-swimming effect. These results surprisingly indicate that physical effects remain the dominant factor regulating bacterial motility and accumulation at the single-cell-layer level in vitro, bridging the gap between simplified hydrodynamic mechanisms and complex biological surfaces with relevance to biofilm formation and bacterial contamination.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08666","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flagellar-driven locomotion plays a critical role in the bacterial attachment and colonization of surfaces, contributing to the risks of contamination and infection. Extensive efforts to uncover the underlying principles governing bacterial motility near surfaces have relied on idealized assumptions about surrounding artificial surfaces. However, in the context of living systems, the role of cells from tissues and organs becomes increasingly critical, particularly in bacterial swimming and adhesion, yet it remains poorly understood. Here, we propose using biological surfaces composed of vascular endothelial cells to experimentally investigate bacterial motion and interaction behaviors. Our results reveal that bacterial trapping observed on inorganic surfaces is counteractively manifested with reduced radii of circular motion on cellular surfaces. Additionally, two distinct modes of bacterial adhesion were identified: tight and loose adhesion. Interestingly, the presence of living cells enhances bacterial surface enrichment, and imposed flow intensifies this accumulation via a bias-swimming effect. These results surprisingly indicate that physical effects remain the dominant factor regulating bacterial motility and accumulation at the single-cell-layer level in vitro, bridging the gap between simplified hydrodynamic mechanisms and complex biological surfaces with relevance to biofilm formation and bacterial contamination.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.