Chitosan-Coated Silver Nanourchins for Imatinib Mesylate Delivery: Biophysical Characterization, In-Silico Profiling, and Anti-Colon Cancer Efficacy.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular Pharmaceutics Pub Date : 2025-04-07 Epub Date: 2025-02-21 DOI:10.1021/acs.molpharmaceut.4c01241
Sankha Bhattacharya, Aalind Joshi, Vishal Beldar, Ashwani Mishra, Satyam Sharma, Rehan Khan, Mohammad Rashid Khan
{"title":"Chitosan-Coated Silver Nanourchins for Imatinib Mesylate Delivery: Biophysical Characterization, <i>In-Silico</i> Profiling, and Anti-Colon Cancer Efficacy.","authors":"Sankha Bhattacharya, Aalind Joshi, Vishal Beldar, Ashwani Mishra, Satyam Sharma, Rehan Khan, Mohammad Rashid Khan","doi":"10.1021/acs.molpharmaceut.4c01241","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the synthesis and characterization of silver nanourchins coated with chitosan (IMT-CS-AgNUs) as a novel platform for the delivery of imatinib mesylate (IMT) for the treatment of colon cancer. <i>In-silico</i> analysis discovered 10 key metabolites for IMT, which have associated respiratory and neurotoxic risks. Molecular docking studies showed the high affinity binding of IMT to critical proteins, including BCL2 (-6.637 kcal/mol), Caspase-6, and EGFR, which proved its potential therapeutic value. IMT-CS-AgNUs were prepared by ionic gelation, and the nanoparticles had a size of 192.98 nm, with an entrapment efficiency of 85.7%. The FTIR and XRD structural characterization confirmed that the nanocarriers were stable and amorphous in nature. In vitro studies of HCT116 cells showed significantly increased cytotoxicity with an IC50 of 0.4 μg/mL; apoptosis by 42.5% and ROS generation by 47.8% when compared to only IMT. The release of drugs from the nanoparticles was sustained over 85% over 60 h, selectively inhibited pathogenic bacteria without harming beneficial microbes, and showed antiangiogenic activity, which is validated through the HET-CAM assay. Gene expression analyses showed that there was marked downregulation of BCL2 and upregulation of apoptotic genes. Pharmacokinetic studies in Wistar rats showed improved bioavailability by 1.8, which allows targeted drug concentrations in the colon with lessened systemic toxicity. Thus, the development of IMT-CS-AgNUs represents a potent approach for targeted colon therapy against cancer, providing therapeutic efficacy, controlled drug release, and added safety.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"1983-2018"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01241","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the synthesis and characterization of silver nanourchins coated with chitosan (IMT-CS-AgNUs) as a novel platform for the delivery of imatinib mesylate (IMT) for the treatment of colon cancer. In-silico analysis discovered 10 key metabolites for IMT, which have associated respiratory and neurotoxic risks. Molecular docking studies showed the high affinity binding of IMT to critical proteins, including BCL2 (-6.637 kcal/mol), Caspase-6, and EGFR, which proved its potential therapeutic value. IMT-CS-AgNUs were prepared by ionic gelation, and the nanoparticles had a size of 192.98 nm, with an entrapment efficiency of 85.7%. The FTIR and XRD structural characterization confirmed that the nanocarriers were stable and amorphous in nature. In vitro studies of HCT116 cells showed significantly increased cytotoxicity with an IC50 of 0.4 μg/mL; apoptosis by 42.5% and ROS generation by 47.8% when compared to only IMT. The release of drugs from the nanoparticles was sustained over 85% over 60 h, selectively inhibited pathogenic bacteria without harming beneficial microbes, and showed antiangiogenic activity, which is validated through the HET-CAM assay. Gene expression analyses showed that there was marked downregulation of BCL2 and upregulation of apoptotic genes. Pharmacokinetic studies in Wistar rats showed improved bioavailability by 1.8, which allows targeted drug concentrations in the colon with lessened systemic toxicity. Thus, the development of IMT-CS-AgNUs represents a potent approach for targeted colon therapy against cancer, providing therapeutic efficacy, controlled drug release, and added safety.

用于甲磺酸伊马替尼给药的壳聚糖包覆银纳米胆:生物物理表征、模拟分析和抗结肠癌功效
本研究研究了壳聚糖包被纳米银(IMT- cs - agnus)作为甲磺酸伊马替尼(IMT)治疗结肠癌的新型递送平台的合成和表征。计算机分析发现了IMT的10种关键代谢物,它们具有相关的呼吸和神经毒性风险。分子对接研究表明,IMT与BCL2 (-6.637 kcal/mol)、Caspase-6和EGFR等关键蛋白具有高亲和力结合,证明了其潜在的治疗价值。采用离子凝胶法制备了IMT-CS-AgNUs,纳米颗粒粒径为192.98 nm,包封效率为85.7%。FTIR和XRD结构表征证实了纳米载体的稳定性和非晶性。体外实验显示HCT116细胞毒性显著增加,IC50为0.4 μg/mL;细胞凋亡减少42.5%,ROS生成减少47.8%。在60 h内,纳米颗粒的药物释放持续超过85%,选择性地抑制致病菌而不伤害有益微生物,并显示出抗血管生成活性,通过et - cam实验验证了这一点。基因表达分析显示BCL2明显下调,凋亡基因明显上调。Wistar大鼠的药代动力学研究表明,生物利用度提高了1.8,这使得靶向药物浓度在结肠中减少了全身毒性。因此,IMT-CS-AgNUs的开发代表了一种有效的结肠癌靶向治疗方法,具有治疗效果、药物释放控制和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信