Generalized products and Lorentzian length spaces

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Elefterios Soultanis
{"title":"Generalized products and Lorentzian length spaces","authors":"Elefterios Soultanis","doi":"10.1007/s11005-025-01910-7","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a Lorentzian length space with an orthogonal splitting on a product <span>\\(I\\times X\\)</span> of an interval and a metric space and use this framework to consider the relationship between metric and causal geometry, as well as synthetic time-like Ricci curvature bounds. The generalized Lorentzian product carries a natural <i>Lorentzian length structure</i> but can fail the push-up condition in general. We recover the push-up property under a log-Lipschitz condition on the time variable and establish sufficient conditions for global hyperbolicity. Moreover, we formulate time-like Ricci curvature bounds without push-up and regularity assumptions and obtain a partial rigidity of the splitting under a strong energy condition.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01910-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01910-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a Lorentzian length space with an orthogonal splitting on a product \(I\times X\) of an interval and a metric space and use this framework to consider the relationship between metric and causal geometry, as well as synthetic time-like Ricci curvature bounds. The generalized Lorentzian product carries a natural Lorentzian length structure but can fail the push-up condition in general. We recover the push-up property under a log-Lipschitz condition on the time variable and establish sufficient conditions for global hyperbolicity. Moreover, we formulate time-like Ricci curvature bounds without push-up and regularity assumptions and obtain a partial rigidity of the splitting under a strong energy condition.

广义积与洛伦兹长度空间
我们在区间和度量空间的乘积\(I\times X\)上构造了一个正交分裂的洛伦兹长度空间,并利用这个框架来考虑度量几何和因果几何之间的关系,以及合成类时里奇曲率界。广义洛伦兹积具有天然的洛伦兹长度结构,但一般不满足俯卧撑条件。在时间变量上恢复了对数lipschitz条件下的俯卧性质,并建立了全局双曲性的充分条件。此外,我们建立了不含推上和正则性假设的类时Ricci曲率界,并得到了在强能量条件下劈裂的部分刚性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信