Multipoint Kinetics Model with Power Reactivity Effect for the Axial Offset Control in the VVER-1200 Nuclear Reactor in the Load-Following Mode

IF 0.3 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR
S. S. Pravosud, Ya. O. Yakubov, V. A. Susakin
{"title":"Multipoint Kinetics Model with Power Reactivity Effect for the Axial Offset Control in the VVER-1200 Nuclear Reactor in the Load-Following Mode","authors":"S. S. Pravosud,&nbsp;Ya. O. Yakubov,&nbsp;V. A. Susakin","doi":"10.1134/S1063778824100399","DOIUrl":null,"url":null,"abstract":"<p>In this work, a multipoint kinetics model for a VVER-1200 nuclear reactor consisting of a diverse (two-point, four-point, six-point, eight-point, and ten-point) set of point kinetics models in the axial direction that are coupled to each other by coefficients determined in the diffusion approximation is proposed and simulated in MATLAB environment. For a more precise description of the dynamic modes of the reactor, the model is provided with power reactivity feedback determined by temperature effects of reactivity and Mann’s approach to describing thermal-hydraulic processes in which it is assumed that two coolant nodes are adjacent to a single fuel node. The effect of different numbers of delayed neutron groups on the accuracy and speed of simulation of transient processes in the load-following mode is tested on the model with four axial points. In addition, a new mathematical model of control rods (CRs) is proposed that uses a combination of sign functions to sequentially influence all nodes during insertion or withdrawal. The results of numerical simulation show that the statistical accuracy of the proposed model is satisfactory, and general assumptions about transients are consistent with their physical definitions. This research contributes to the advancement of point nuclear reactor models for improving the synthesis of an automatic power controller.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"87 11","pages":"1579 - 1590"},"PeriodicalIF":0.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Atomic Nuclei","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063778824100399","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a multipoint kinetics model for a VVER-1200 nuclear reactor consisting of a diverse (two-point, four-point, six-point, eight-point, and ten-point) set of point kinetics models in the axial direction that are coupled to each other by coefficients determined in the diffusion approximation is proposed and simulated in MATLAB environment. For a more precise description of the dynamic modes of the reactor, the model is provided with power reactivity feedback determined by temperature effects of reactivity and Mann’s approach to describing thermal-hydraulic processes in which it is assumed that two coolant nodes are adjacent to a single fuel node. The effect of different numbers of delayed neutron groups on the accuracy and speed of simulation of transient processes in the load-following mode is tested on the model with four axial points. In addition, a new mathematical model of control rods (CRs) is proposed that uses a combination of sign functions to sequentially influence all nodes during insertion or withdrawal. The results of numerical simulation show that the statistical accuracy of the proposed model is satisfactory, and general assumptions about transients are consistent with their physical definitions. This research contributes to the advancement of point nuclear reactor models for improving the synthesis of an automatic power controller.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Atomic Nuclei
Physics of Atomic Nuclei 物理-物理:核物理
CiteScore
0.60
自引率
25.00%
发文量
56
审稿时长
3-6 weeks
期刊介绍: Physics of Atomic Nuclei is a journal that covers experimental and theoretical studies of nuclear physics: nuclear structure, spectra, and properties; radiation, fission, and nuclear reactions induced by photons, leptons, hadrons, and nuclei; fundamental interactions and symmetries; hadrons (with light, strange, charm, and bottom quarks); particle collisions at high and superhigh energies; gauge and unified quantum field theories, quark models, supersymmetry and supergravity, astrophysics and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信